价值迭代与策略迭代:理解强化学习中的两大经典算法

价值迭代与策略迭代:理解强化学习中的两大经典算法

在强化学习(Reinforcement Learning)中,价值迭代(Value Iteration)和策略迭代(Policy Iteration)是两种经典的算法,用于求解马尔可夫决策过程(MDP)。本文将深入浅出地介绍这两种算法,并通过有趣的实例帮助读者理解它们的区别和联系。

价值迭代

什么是价值迭代?

价值迭代是一种动态规划算法,其核心思想是通过不断更新每个状态的价值,最终收敛到最优值函数,从而确定最优策略。

价值迭代的步骤

  1. 初始化:将所有状态的初始价值设为0,即 ( V_0(s) = 0 )。
  2. 迭代更新
    • 对于每个时间步 ( k = 1, 2, \ldots, H )
      • 对于每一个状态 ( s )
        • 计算新价值 ( V_{k+1}(s) ):
          [ V_{k+1}(s) = \max_{a} \left[ R(s, a) + \gamma \sum_{s’} P(s’|s, a) V_k(s’) \right] ]
        • 更新最优策略 ( \pi_{k+1}(s) ):
          [ \pi_{k+1}(s) = \arg \max_{a} \left[ R(s, a) + \gamma \sum_{s’} P(s’|s, a) V_k(s’) \right] ]
    • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值