价值迭代与策略迭代:理解强化学习中的两大经典算法
在强化学习(Reinforcement Learning)中,价值迭代(Value Iteration)和策略迭代(Policy Iteration)是两种经典的算法,用于求解马尔可夫决策过程(MDP)。本文将深入浅出地介绍这两种算法,并通过有趣的实例帮助读者理解它们的区别和联系。
价值迭代
什么是价值迭代?
价值迭代是一种动态规划算法,其核心思想是通过不断更新每个状态的价值,最终收敛到最优值函数,从而确定最优策略。
价值迭代的步骤
- 初始化:将所有状态的初始价值设为0,即 ( V_0(s) = 0 )。
- 迭代更新:
- 对于每个时间步 ( k = 1, 2, \ldots, H )
- 对于每一个状态 ( s )
- 计算新价值 ( V_{k+1}(s) ):
[ V_{k+1}(s) = \max_{a} \left[ R(s, a) + \gamma \sum_{s’} P(s’|s, a) V_k(s’) \right] ] - 更新最优策略 ( \pi_{k+1}(s) ):
[ \pi_{k+1}(s) = \arg \max_{a} \left[ R(s, a) + \gamma \sum_{s’} P(s’|s, a) V_k(s’) \right] ]
- 计算新价值 ( V_{k+1}(s) ):
<
- 对于每一个状态 ( s )
- 对于每个时间步 ( k = 1, 2, \ldots, H )