最小二乘估计(1)

最小二乘估计方法是一种利用观测数据估计线性模型中未知参数的方法,其基本思路是,选择合适的估计参数使模型输出与传感器实测输出数据之差的平方和最小

在介绍最小二乘方法之前先明确一个现象,即传感器的测量数据和实际的真实值通常不是完全一致的。测量时,由于各种因素的影响,会对测量造成误差,导致物理量的测量数据和真实值不一样,这就是通常所说的“测得不准”。

1、最小二乘估计方法描述

θ \pmb\theta θ 表示待估计量, Z ( k ) 、 N ( k ) Z(k)、N(k) Z(k)N(k) 分别表示第 k k k 次观测数据和观测噪声, H ( k ) \pmb H(k) H(k) 为观测矩阵,线性观测方程可以用如下方程描述:
Z ( k ) = H ( k ) θ + N ( k ) (1) Z(k) = \pmb H(k)\pmb\theta + N(k)\tag{1} Z(k)=H(k)θ+N(k)(1)

假设某室内温度数据(1000个室温数据)如图所示,且真实值变化规律为 y = θ 1 x + θ 2 y =\theta_1x+\theta_2 y=θ1x+θ2,求 θ 1 、 θ 2 \theta_1、\theta_2 θ1θ2 的最优估计。
在这里插入图片描述

我们将观测方程设为 Z ( k ) = θ 1 t ( k ) + θ 2 + N ( k ) Z(k)=\theta_1t(k) + \theta_2 + N(k) Z(k)=θ1t(k)+θ2+N(k),即
Z ( k ) = [   t ( k ) 1   ] [   θ 1   θ 2 ] + N ( k ) (2) Z(k) = \textbf{[}\ t(k)\quad1\ \textbf{]} \left[ \begin{matrix} \ \theta_1 \\[1ex] \ \theta_2 \end{matrix} \right] +N(k)\tag{2} Z(k)=[ t(k)1 ][ θ1 θ2]+N(k)(2)

k k k 个观测数据写成向量的形式:
Z k = [   Z ( 1 )   Z ( 2 ) ⋮   Z ( k ) ] , H k = [   H ( 1 )   H ( 2 ) ⋮   H ( k ) ] , N k = [   N ( 1 )   N ( 2 ) ⋮   N ( k ) ] (3) \pmb Z_k = \left[ \begin{matrix} \ Z(1) \\[1ex] \ Z(2) \\[1ex] \vdots \\[1ex] \ Z(k) \end{matrix} \right],\quad \pmb H_k= \left[ \begin{matrix} \ \pmb H(1) \\[1ex] \ \pmb H(2) \\[1ex] \vdots \\[1ex] \ \pmb H(k) \end{matrix} \right],\quad \pmb N_k= \left[ \begin{matrix} \ N(1) \\[1ex] \ N(2) \\[1ex] \vdots \\[1ex] \ N(k) \end{matrix} \right]\tag{3} Zk=  Z(1) Z(2) Z(k) ,Hk=  H(1) H(2) H(k) ,Nk=  N(1) N(2) N(k) (3)

k k k 个观测数据满足如下方程:
Z k = H k θ + N k (4) \pmb Z_k = \pmb H_k\pmb\theta + \pmb N_k\tag{4} Zk=Hkθ+Nk(4)

前面已经说过,最小二乘估计方法要求测量模型输出 H ( k ) θ \pmb H(k)\pmb\theta H(k)θ 与实际测量数据输出之差 Z ( k ) Z(k) Z(k) 的平方和最小,即 ∑ ( Z ( k ) − H ( k ) θ ^ ) 2 \sum\big(Z(k)-\pmb H(k)\hat{\pmb \theta}\big)^2 (Z(k)H(k)θ^)2 达到最小。将求和性能指标写成下面矩阵形式:
J ( θ ^ ) = ( Z k − H k θ ^ ) T ( Z k − H k θ ^ ) (5) \pmb J(\hat{\pmb\theta})=(\pmb Z_k - \pmb H_k\hat{\pmb\theta})^T(\pmb Z_k - \pmb H_k\hat{\pmb\theta})\tag{5} J(θ^)=(ZkHkθ^)T(ZkHkθ^)(5)

将式(4)代入式(5)后,可以得到
J ( θ ^ ) = ( H k θ + N k − H k θ ^ ) T ( H k θ + N k − H k θ ^ ) = ( θ − θ ^ ) T H k T H k ( θ − θ ^ ) + ( θ − θ ^ ) T H k T N k + N k T H k ( θ − θ ^ ) + N k T N k (6) \begin{aligned} \pmb J(\hat{\pmb\theta})&=( \pmb H_k\pmb\theta + \pmb N_k - \pmb H_k\hat{\pmb\theta})^T( \pmb H_k\pmb\theta + \pmb N_k - \pmb H_k\hat{\pmb\theta})\\[1ex] &=(\pmb\theta-\hat{\pmb\theta})^T\pmb H_k^T\pmb H_k(\pmb\theta-\hat{\pmb\theta}) + (\pmb\theta-\hat{\pmb\theta})^T\pmb H_k^T\pmb N_k+\pmb N_k^T\pmb H_k(\pmb\theta-\hat{\pmb\theta}) + \pmb N_k^T\pmb N_k \end{aligned}\tag{6} J(θ^)=(Hkθ+NkHkθ^)T(Hkθ+NkHkθ^)=(θθ^)THkTHk(θθ^)+(θθ^)THkTNk+NkTHk(θθ^)+NkTNk(6)

如果真实的参数 θ \pmb\theta θ 和估计 θ ^ \hat{\pmb \theta} θ^ 与测量噪声 N k \pmb N_k Nk 无关,上式两边取期望可以得到
J ( θ ^ ) = E [ ( θ − θ ^ ) T H k T H k ( θ − θ ^ ) ] + E ( N k T N k ) (7) \pmb J(\hat{\pmb\theta})=\Bbb E\big[(\pmb\theta-\hat{\pmb\theta})^T\pmb H_k^T\pmb H_k(\pmb\theta-\hat{\pmb\theta}) \big] + \Bbb E\big( \pmb N_k^T\pmb N_k\big)\tag{7} J(θ^)=E[(θθ^)THkTHk(θθ^)]+E(NkTNk)(7)

仔细观测发现,发现该式由两项为正的子式加和组成,后一项表明测量噪声的方差和估计参数无关。对于前一项来说,真实的参数 θ \pmb\theta θ 和估计参数 θ ^ \hat{\pmb\theta} θ^ 越接近,该项的数值就会越小,因此,只要对对性能指标函数 J ( θ ^ ) \pmb J(\hat{\pmb\theta}) J(θ^) 求极小值,找到的 θ ^ \hat{\pmb\theta} θ^ 就是所求得估计参数。

∂ ∂ θ ^ [ ( Z k − H k θ ^ ) T ( Z k − H k θ ^ ) ] = − 2 H k T ( Z k − H k θ ^ ) (8) \frac{\partial}{\partial\hat{\pmb\theta}}[(\pmb Z_k - \pmb H_k\hat{\pmb\theta})^T(\pmb Z_k - \pmb H_k\hat{\pmb\theta})]=-2\pmb H_k^T(\pmb Z_k-\pmb H_k\hat{\pmb\theta})\tag{8} θ^[(ZkHkθ^)T(ZkHkθ^)]=2HkT(ZkHkθ^)(8)

令式(8)等于 0,可得
H k T Z k − H k T H k θ ^ = 0 (9) \pmb H_k^T\pmb Z_k-\pmb H_k^T\pmb H_k\hat{\pmb\theta}=0\tag{9} HkTZkHkTHkθ^=0(9)

进一步推导可得
H k T Z k = H k T H k θ ^ (10) \pmb H_k^T\pmb Z_k=\pmb H_k^T\pmb H_k\hat{\pmb\theta}\tag{10} HkTZk=HkTHkθ^(10)

假设 H k T H k \pmb H_k^T\pmb H_k HkTHk 是满秩的,可得
θ ^ = ( H k T H k ) − 1 H k Z k (11) \boxed{\hat{\pmb\theta}=(\pmb H_k^T\pmb H_k)^{-1}\pmb H_k\pmb Z_k}\tag{11} θ^=(HkTHk)1HkZk(11)

利用上述估计方法估计室内温度的变化可得 θ ^ = [   θ ^ 1   θ ^ 2 ] = [   1.9808   20.0125 ] \hat{\pmb\theta}=\left[ \begin{matrix} \ \hat\theta_1 \\[1ex] \ \hat\theta_2 \end{matrix} \right]=\left[ \begin{matrix} \ 1.9808 \\[1ex] \ 20.0125 \end{matrix} \right] θ^=[ θ^1 θ^2]=[ 1.9808 20.0125]

2、练习题

美国在 1946 ~ 1956 年的钢产量分别为 66.6 百万吨、84.9 百万吨、88.6 百万吨、78.0 百万吨、96.8 百万吨、105.2 百万吨、93.2 百万吨、111.6 百万吨、88.3 百万吨、117.0 百万吨、115.2 百万吨,请分别用一次线性曲线、二次曲线、三次曲线以及四次曲线来拟合这些数据,并预测1957 ~ 1960年的钢产量。
在这里插入图片描述

(1)一次曲线方程为
z ( k ) = a 1 k + a 0 + w ( k ) (12) z(k) = a_1k+a_0+w(k)\tag{12} z(k)=a1k+a0+w(k)(12)

写成矩阵形式测量方程
z ( k ) = [   k 1   ] [   a 1   a 0 ] + w ( k ) (13) z(k) = \textbf{[}\ k\quad1\ \textbf{]} \left[ \begin{matrix} \ a_1 \\[1ex] \ a_0 \end{matrix} \right] +w(k)\tag{13} z(k)=[ k1 ][ a1 a0]+w(k)(13)

H k \pmb H_k Hk 和待估计参数 θ \pmb\theta θ 分别为
H k = [ 1 1 2 1 3 1 ⋮ ⋮ 11 1 ] , θ = [   a 1   a 0 ] (14) \pmb H_k = \left[ \begin{matrix} 1 & 1 \\[1ex] 2 & 1 \\[1ex] 3 & 1 \\[1ex] \vdots & \vdots\\[1ex] 11 & 1 \end{matrix} \right],\quad \pmb\theta=\left[ \begin{matrix} \ a_1 \\[1ex] \ a_0 \end{matrix} \right]\tag{14} Hk= 123111111 ,θ=[ a1 a0](14)

在这里插入图片描述
(2)二次曲线测量方程为
z ( k ) = a 2 k 2 + a 1 k + a 0 + w ( k ) = [   k 2 k 1   ] [   a 2   a 1   a 0 ] + w ( k ) (15) \begin{aligned} z(k)&=a_2k^2 + a_1k + a_0 + w(k)\\ &=\textbf{[}\ k^2\quad k\quad 1\ \textbf{]} \left[ \begin{matrix} \ a_2 \\[1ex] \ a_1 \\[1ex] \ a_0 \end{matrix} \right] +w(k) \end{aligned}\tag{15} z(k)=a2k2+a1k+a0+w(k)=[ k2k1 ]  a2 a1 a0 +w(k)(15)

与前面类似,
H k = [ 1 1 1 2 2 2 1 3 2 3 1 ⋮ ⋮ 1 1 2 11 1 ] , θ = [   a 2   a 1   a 0 ] (16) \pmb H_k = \left[ \begin{matrix} 1 & 1 & 1\\[1ex] 2^2 & 2 & 1 \\[1ex] 3^2 & 3 & 1 \\[1ex] \vdots & \vdots\\[1ex] 11^2 & 11 & 1 \end{matrix} \right],\quad \pmb\theta=\left[ \begin{matrix} \ a_2 \\[1ex] \ a_1 \\[1ex] \ a_0 \end{matrix} \right]\tag{16} Hk= 12232112123111111 ,θ=  a2 a1 a0 (16)

在这里插入图片描述
(3)三次曲线同理
在这里插入图片描述
(4)四次曲线
在这里插入图片描述

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值