最小二乘估计(2)

1、最小二乘加权估计

最小二乘估计(1)中并没有使用测量噪声方差,加权的依据来源于测量的准确性。假设测量噪声为高斯白噪声 N k \pmb N_k Nk,其均值和协方差分别为 E ( N k ) = 0 ,   E ( N k N k T ) = R k E(\pmb N_k)=0,\ E(\pmb N_k\pmb N_k^T)=\pmb R_k E(Nk)=0, E(NkNkT)=Rk,若每次测量噪声不相关,则 R k \pmb R_k Rk 为对角阵,即
R k = [ R ( 1 ) R ( 2 ) ⋱ R ( k ) ] (1) \pmb R_k=\left[ \begin{matrix} R(1) & & & \\ & R(2) & & \\ & & \ddots & \\ & & & R(k)\\ \end{matrix} \right]\tag{1} Rk= R(1)R(2)R(k) (1)

式中, R ( 1 ) , R ( 2 ) , ⋯   , R ( k ) R(1),R(2),\cdots,R(k) R(1),R(2),,R(k) 是测量噪声在 1 , 2 , ⋯   , k 1,2,\cdots,k 1,2,,k 时刻的方差。设权值用 W \pmb W W 表示,可取 W = R k − 1 \pmb W = \pmb R_k^{-1} W=Rk1。这样做的原因在于当数据测量方差大时,其权重应设置小些。当然,也可以使用其他函数实现这种关系,但是一般情况下都将测量噪声方差的“逆”取为权值。

考虑每个测量时刻的测量噪声方差,设线性最小二乘加权估计的性能指标为
J w ( θ ^ ) = ( Z k − H k θ ^ ) W ( Z k − H k θ ^ ) (2) \pmb J_w(\hat{\pmb\theta}) = (\pmb Z_k - \pmb H_k\hat{\pmb\theta})\pmb W(\pmb Z_k - \pmb H_k\hat{\pmb\theta})\tag{2} Jw(θ^)=(ZkHkθ^)W(ZkHkθ^)(2)

接下来的任务是选择 θ ^ \hat{\pmb\theta} θ^ 使之达到最小。与 最小二乘估计(1)类似,使用求极值的方式来解决问题。令 ∂ J w ( θ ^ ) ∂ θ ^ = 0 \dfrac{\partial\pmb J_w(\hat{\pmb\theta})}{\partial\hat{\pmb\theta}}=0 θ^Jw(θ^)=0,则
∂ J w ( θ ^ ) ∂ θ ^ = ∂ ∂ θ ^ [ ( Z k − H k θ ^ ) W ( Z k − H k θ ^ ) ] = − 2 H k T W ( Z k − H k θ ^ ) = 0 (3) \dfrac{\partial\pmb J_w(\hat{\pmb\theta})}{\partial\hat{\pmb\theta}}=\dfrac{\partial}{\partial\hat{\pmb\theta}}[(\pmb Z_k - \pmb H_k\hat{\pmb\theta})\pmb W(\pmb Z_k - \pmb H_k\hat{\pmb\theta})]=-2\pmb H_k^T\pmb W(\pmb Z_k-\pmb H_k\hat{\pmb\theta})=0\tag{3} θ^Jw(θ^)=θ^[(ZkHkθ^)W(ZkHkθ^)]=2HkTW(ZkHkθ^)=0(3)

解上述方程得到
θ ^ = ( H k T W H k ) − 1 H k T W Z k (4) \hat{\pmb\theta}=(\pmb H_k^T\pmb W\pmb H_k)^{-1}\pmb H_k^T\pmb W\pmb Z_k\tag{4} θ^=(HkTWHk)1HkTWZk(4)

2、线性最小二乘递推估计

递推估计的核心思想是,在获得测量数据以后及时地进行处理,而不必等到所有测量数据都获得后再进行估计,而且在估计当前时刻的参数时,可以利用前一次得到的结果,而不必将数据全部重新计算一遍。也就是说,线性最小二乘递推估计方法关注的是:如果已经得到第 k − 1 k-1 k1 步的估计 θ ^ ( k − 1 ) \hat{\pmb\theta}(k-1) θ^(k1),当第 k k k 步的测量 Z ( k ) Z(k) Z(k) 到达后,在 H ( k ) \pmb H(k) H(k) 已知情况下,如何利用 θ ^ ( k − 1 ) 、 Z ( k ) \hat{\pmb\theta}(k-1)、Z(k) θ^(k1)Z(k) H ( k ) \pmb H(k) H(k) 构造估计量 θ ^ ( k ) \hat{\pmb\theta}(k) θ^(k) 使估计结果越来越接近估计量的真实值。

设加权矩阵为 W k − 1 = d i a g [ W ( 1 ) , W ( 2 ) , ⋯   , W ( k − 1 ) ] \pmb W_{k-1}=\rm{diag}[\pmb W(1),\pmb W(2),\cdots,\pmb W(k-1)] Wk1=diag[W(1),W(2),,W(k1)],根据线性最小二乘加权估计方法式(4),可知估计矢量的计算方法 θ ^ ( k − 1 ) \hat{\pmb\theta}(k-1) θ^(k1)
θ ^ ( k − 1 ) = ( H k − 1 T W k − 1 H k − 1 ) − 1 H k − 1 T W k − 1 Z k − 1 (5) \hat{\pmb\theta}(k-1)=(\pmb H_{k-1}^T\pmb W_{k-1}\pmb H_{k-1})^{-1}\pmb H_{k-1}^T\pmb W_{k-1}\pmb Z_{k-1}\tag{5} θ^(k1)=(Hk1TWk1Hk1)1Hk1TWk1Zk1(5)

式中,测量数据 Z k − 1 \pmb Z_{k-1} Zk1、测量矩阵 H k − 1 \pmb H_{k-1} Hk1 以及相应的测量噪声 N k − 1 \pmb N_{k-1} Nk1 分别为
Z k − 1 = [   z ( 1 )   z ( 2 ) ⋮   z ( k − 1 ) ] , H k − 1 = [   H ( 1 )   H ( 2 ) ⋮   H ( k − 1 ) ] , N k − 1 = [   N ( 1 )   N ( 2 ) ⋮   N ( k − 1 ) ] (6) \pmb Z_{k-1}=\left[ \begin{matrix} \ z(1)\\ \ z(2)\\ \vdots\\ \ z(k-1)\\ \end{matrix} \right],\quad \pmb H_{k-1}=\left[ \begin{matrix} \ \pmb H(1)\\ \ \pmb H(2)\\ \vdots\\ \ \pmb H(k-1)\\ \end{matrix} \right],\quad \pmb N_{k-1}=\left[ \begin{matrix} \ N(1)\\ \ N(2)\\ \vdots\\ \ N(k-1)\\ \end{matrix} \right]\tag{6} Zk1=  z(1) z(2) z(k1) ,Hk1=  H(1) H(2) H(k1) ,Nk1=  N(1) N(2) N(k1) (6)

M k − 1 = ( H k − 1 T W k − 1 H k − 1 ) − 1 \pmb M_{k-1}=(\pmb H_{k-1}^T\pmb W_{k-1}\pmb H_{k-1})^{-1} Mk1=(Hk1TWk1Hk1)1,则
θ ^ ( k − 1 ) = M k − 1 H k − 1 T W k − 1 Z k − 1 (7) \hat{\pmb\theta}(k-1)=\pmb M_{k-1}\pmb H_{k-1}^T\pmb W_{k-1}\pmb Z_{k-1}\tag{7} θ^(k1)=Mk1Hk1TWk1Zk1(7)

H ( k ) \pmb H(k) H(k) 已知的情况下,当得到第 k − 1 k-1 k1 步的估计 θ ^ ( k − 1 ) \hat{\pmb\theta}(k-1) θ^(k1),并且测量 Z ( k ) Z(k) Z(k) 到达后,根据最小二乘加权方法式(4),可以得到 θ ^ ( k ) \hat{\pmb\theta}(k) θ^(k)
θ ^ ( k ) = ( H k T W k H k ) − 1 H k T W k Z k (8) \hat{\pmb\theta}(k)=(\pmb H_{k}^T\pmb W_{k}\pmb H_{k})^{-1}\pmb H_{k}^T\pmb W_{k}\pmb Z_{k}\tag{8} θ^(k)=(HkTWkHk)1HkTWkZk(8)

前面提过,测量数据 Z k \pmb Z_{k} Zk、测量矩阵 H k \pmb H_{k} Hk 以及相应的测量噪声 N k \pmb N_{k} Nk 分别为
Z k = [   z ( 1 )   z ( 2 ) ⋮   z ( k ) ] , H k − 1 = [   H ( 1 )   H ( 2 ) ⋮   H ( k ) ] , N k − 1 = [   N ( 1 )   N ( 2 ) ⋮   N ( k ) ] (9) \pmb Z_{k}=\left[ \begin{matrix} \ z(1)\\ \ z(2)\\ \vdots\\ \ z(k)\\ \end{matrix} \right],\quad \pmb H_{k-1}=\left[ \begin{matrix} \ \pmb H(1)\\ \ \pmb H(2)\\ \vdots\\ \ \pmb H(k)\\ \end{matrix} \right],\quad \pmb N_{k-1}=\left[ \begin{matrix} \ N(1)\\ \ N(2)\\ \vdots\\ \ N(k)\\ \end{matrix} \right]\tag{9} Zk=  z(1) z(2) z(k) ,Hk1=  H(1) H(2) H(k) ,Nk1=  N(1) N(2) N(k) (9)

同样令 M k = ( H k T W k H k ) − 1 \pmb M_{k}=(\pmb H_{k}^T\pmb W_{k}\pmb H_{k})^{-1} Mk=(HkTWkHk)1,则
θ ^ ( k ) = M k H k T W k Z k (10) \hat{\pmb\theta}(k)=\pmb M_{k}\pmb H_{k}^T\pmb W_{k}\pmb Z_{k}\tag{10} θ^(k)=MkHkTWkZk(10)

现在需要建立 θ ^ ( k ) \hat{\pmb\theta}(k) θ^(k) θ ^ ( k − 1 ) \hat{\pmb\theta}(k-1) θ^(k1) 之间的关系,首先 Z k = [   Z k − 1   Z ( k ) ] \pmb Z_k=\left[ \begin{matrix} \ \pmb Z_{k-1}\\[1ex] \ Z(k)\\ \end{matrix} \right] Zk=[ Zk1 Z(k)],同样, H k = [   H k − 1   H ( k ) ] \pmb H_k=\left[ \begin{matrix} \ \pmb H_{k-1}\\[1ex] \ H(k)\\ \end{matrix} \right] Hk=[ Hk1 H(k)],对于测量噪声来说,噪声的关系矩阵 N k = [   N k − 1   N ( k ) ] \pmb N_k=\left[ \begin{matrix} \ \pmb N_{k-1}\\[1ex] \ N(k)\\ \end{matrix} \right] Nk=[ Nk1 N(k)] 意味着噪声方差的关系满足 W k = [   W k − 1 0   0 W ( k ) ] \pmb W_k=\left[ \begin{matrix} \ \pmb W_{k-1} & 0\\[1ex] \ 0 & \pmb W(k)\\ \end{matrix} \right] Wk=[ Wk1 00W(k)],很显然, M k \pmb M_k Mk M k − 1 \pmb M_{k-1} Mk1 也是有关系的,将 H k \pmb H_k Hk W k \pmb W_k Wk 代入 M k \pmb M_k Mk
M k = { [   H k − 1 T H T ( k )   ] [   W k − 1 0   0 W ( k ) ] [   H k − 1   H ( k ) ] } − 1 (11) \pmb M_k=\left\{ \left[\ \pmb H_{k-1}^T\quad \pmb H^T(k)\ \right]\left[ \begin{matrix} \ \pmb W_{k-1} & 0\\[1ex] \ 0 & \pmb W(k)\\ \end{matrix} \right]\left[ \begin{matrix} \ \pmb H_{k-1}\\[1ex] \ H(k)\\ \end{matrix} \right]\right\}^{-1}\tag{11} Mk={[ Hk1THT(k) ][ Wk1 00W(k)][ Hk1 H(k)]}1(11)

进行矩阵相乘运算得到
M k = [   H k − 1 T W k − 1 H k − 1 + H T ( k ) W ( k ) H ( k )   ] − 1 = [   M k − 1 − 1 + H T ( k ) W ( k ) H ( k )   ] − 1 (12) \begin{aligned} \pmb M_k&=[\ \pmb H_{k-1}^T\pmb W_{k-1}\pmb H_{k-1}+\pmb H^T(k)\pmb W(k)\pmb H(k)\ ]^{-1}\\[1ex] &=[\ \pmb M_{k-1}^{-1}+\pmb H^T(k)\pmb W(k)\pmb H(k)\ ]^{-1} \end{aligned}\tag{12} Mk=[ Hk1TWk1Hk1+HT(k)W(k)H(k) ]1=[ Mk11+HT(k)W(k)H(k) ]1(12)

两边取逆后得到 M k − 1 \pmb M_{k-1} Mk1 M k \pmb M_{k} Mk 的关系如下:
M k − 1 − 1 = M k − 1 − H T ( k ) W ( k ) H ( k ) (13) \boxed{\pmb M_{k-1}^{-1}=\pmb M_{k}^{-1} - \pmb H^T(k)\pmb W(k)\pmb H(k)\tag{13}} Mk11=Mk1HT(k)W(k)H(k)(13)

接下来我们将 Z k 、 H k 、 W k 、 M k \pmb Z_k、\pmb H_k、\pmb W_k、\pmb M_k ZkHkWkMk 代入式(10),有
θ ^ ( k ) = M k H k T W k Z k = M k [   H k − 1 T H T ( k )   ] [   W k − 1 0   0 W ( k ) ] [   Z k − 1   Z ( k ) ] = M k [   H k − 1 T W k − 1 Z k − 1 + H T ( k ) W ( k ) Z ( k )   ] = M k [   M k − 1 − 1 θ ^ ( k − 1 ) + H T ( k ) W ( k ) Z ( k )   ] = M k [   ( M k − 1 − H T ( k ) W ( k ) H ( k ) ) θ ^ ( k − 1 ) + H T ( k ) W ( k ) Z ( k )   ] = θ ^ ( k − 1 ) − M k H T ( k ) W ( k ) H ( k ) θ ^ ( k − 1 ) + M k H T ( k ) W ( k ) Z ( k ) = θ ^ ( k − 1 ) + M k H T ( k ) W ( k ) [ Z ( k ) − H ( k ) θ ^ ( k − 1 ) ] (14) \boxed{\begin{aligned} \hat{\pmb\theta}(k)&=\pmb M_{k}\pmb H_{k}^T\pmb W_{k}\pmb Z_{k}\\[1ex] &=\pmb M_{k}\left[\ \pmb H_{k-1}^T\quad \pmb H^T(k)\ \right]\left[ \begin{matrix} \ \pmb W_{k-1} & 0\\[1ex] \ 0 & \pmb W(k)\\ \end{matrix} \right]\left[ \begin{matrix} \ \pmb Z_{k-1}\\[1ex] \ Z(k)\\ \end{matrix} \right]\\[1ex] &=\pmb M_k\left[\ \pmb H_{k-1}^T\pmb W_{k-1}\pmb Z_{k-1}+\pmb H^T(k)\pmb W(k)Z(k)\ \right]\\[1ex] &=\pmb M_k\left[\ \pmb M_{k-1}^{-1}\hat{\pmb\theta}(k-1)+\pmb H^T(k)\pmb W(k)Z(k)\ \right]\\[1ex] &=\pmb M_k\left[\ \left(\pmb M_{k}^{-1} - \pmb H^T(k)\pmb W(k)\pmb H(k)\right)\hat{\pmb\theta}(k-1)+\pmb H^T(k)\pmb W(k)Z(k)\ \right]\\[1ex] &=\hat{\pmb\theta}(k-1)-\pmb M_k\pmb H^T(k)\pmb W(k)\pmb H(k)\hat{\pmb\theta}(k-1) + \pmb M_k\pmb H^T(k)\pmb W(k)Z(k)\\[1ex] &=\hat{\pmb\theta}(k-1)+\pmb M_k\pmb H^T(k)\pmb W(k)\left[Z(k)-\pmb H(k)\hat{\pmb\theta}(k-1) \right] \end{aligned}\tag{14}} θ^(k)=MkHkTWkZk=Mk[ Hk1THT(k) ][ Wk1 00W(k)][ Zk1 Z(k)]=Mk[ Hk1TWk1Zk1+HT(k)W(k)Z(k) ]=Mk[ Mk11θ^(k1)+HT(k)W(k)Z(k) ]=Mk[ (Mk1HT(k)W(k)H(k))θ^(k1)+HT(k)W(k)Z(k) ]=θ^(k1)MkHT(k)W(k)H(k)θ^(k1)+MkHT(k)W(k)Z(k)=θ^(k1)+MkHT(k)W(k)[Z(k)H(k)θ^(k1)](14)

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值