最小二乘估计(3)

1、最小二乘的性能——估计方差

定量描述估计的误差,估计方差是一个很关键的评价指标。本节给出几种最小二乘方法滤波增益和估计方差的求解方法,这些也是卡尔曼滤波器的理论基础。

估计方差的定义为
P ( k ) = E [ ( θ − θ ^ ( k ) ) ( θ − θ ^ ( k ) ) T ] \pmb P(k) = E\left[(\pmb\theta-\hat{\pmb\theta}(k))(\pmb\theta-\hat{\pmb\theta}(k))^T\right] P(k)=E[(θθ^(k))(θθ^(k))T]

式中, θ \pmb\theta θ 为待估计参数的真值, θ ^ ( k ) \hat{\pmb\theta}(k) θ^(k) 为第 k k k 步的估计值, E ( ⋅ ) E(\cdot) E() 表示求均值。一般可以认为,所得的估计方差越小,估计方法就越好。

接下来以递推最小二乘方法为例,研究一下最小二乘方法的估计方差。前面已经讲过,权值 W ( k ) W(k) W(k) 一般取为测量噪声方差 R ( k ) R(k) R(k) 的倒数,如果权值 W ( k ) W(k) W(k) 为一个矩阵的话则取为 R ( k ) R(k) R(k) 的逆。从现在开始都用 R − 1 ( k ) R^{-1}(k) R1(k) 来代替 W ( k ) W(k) W(k)
θ ^ ( k ) = θ ^ ( k − 1 ) + M k H T ( k ) W ( k ) [ Z ( k ) − H ( k ) θ ^ ( k − 1 ) ] M k − 1 = M k − 1 − 1 + H T ( k ) W ( k ) H ( k ) (1) \boxed{\begin{aligned} \hat{\pmb\theta}(k)&=\hat{\pmb\theta}(k-1)+\pmb M_k\pmb H^T(k)\pmb W(k)\left[Z(k)-\pmb H(k)\hat{\pmb\theta}(k-1) \right]\\ \pmb M_{k}^{-1}&=\pmb M_{k-1}^{-1} + \pmb H^T(k)\pmb W(k)\pmb H(k) \end{aligned}\tag{1}} θ^(k)Mk1=θ^(k1)+MkHT(k)W(k)[Z(k)H(k)θ^(k1)]=Mk11+HT(k)W(k)H(k)(1)

我们令 K ( k ) = M k H T ( k ) R − 1 ( k ) \pmb K(k)=\pmb M_k\pmb H^T(k)\pmb R^{-1}(k) K(k)=MkHT(k)R1(k),称其为滤波增益,将上式代入估计方差的定义,可以得到
P ( k ) = E [ ( θ − θ ^ ( k ) ) ( θ − θ ^ ( k ) ) T ] = E [ ( θ − θ ^ ( k − 1 ) − K ( k ) ( Z ( k ) − H ( k ) θ ^ ( k − 1 ) ) )         ( θ − θ ^ ( k − 1 ) − K ( k ) ( Z ( k ) − H ( k ) θ ^ ( k − 1 ) ) ) T ] (2) \begin{aligned} \pmb P(k)&= E\left[(\pmb\theta-\hat{\pmb\theta}(k))(\pmb\theta-\hat{\pmb\theta}(k))^T\right]\\[1ex] &= E\Bigg[\bigg(\pmb\theta-\hat{\pmb\theta}(k-1)-\pmb K(k)\left(Z(k)-\pmb H(k)\hat{\pmb\theta}(k-1) \right)\bigg)\\[1ex] &\quad\ \ \ \ \ \ \ \bigg(\pmb\theta-\hat{\pmb\theta}(k-1)-\pmb K(k)\left(Z(k)-\pmb H(k)\hat{\pmb\theta}(k-1) \right)\bigg)^T\Bigg] \end{aligned}\tag{2} P(k)=E[(θθ^(k))(θθ^(k))T]=E[(θθ^(k1)K(k)(Z(k)H(k)θ^(k1)))       (θθ^(k1)K(k)(Z(k)H(k)θ^(k1)))T](2)

再将测量方程 Z ( k ) = H ( k ) θ + N ( k ) Z(k)=\pmb H(k)\pmb\theta+N(k) Z(k)=H(k)θ+N(k) 代入上式,考虑到待估计值与 N ( k ) N(k) N(k) 不相关,整理后可以得到
P ( k ) = [ I − K ( k ) H ( k ) ] P ( k − 1 ) [ I − K ( k ) H ( k ) ] T + K ( k ) R ( k ) K T ( k ) (3) \pmb P(k)=\Big[\pmb I-\pmb K(k)\pmb H(k)\Big]\pmb P(k-1)\Big[\pmb I-\pmb K(k)\pmb H(k)\Big]^T + \pmb K(k)\pmb R(k)\pmb K^T(k)\tag{3} P(k)=[IK(k)H(k)]P(k1)[IK(k)H(k)]T+K(k)R(k)KT(k)(3)

接下来讨论递推最小二乘方法的估计性能问题,其结果是最优的吗?

令式(3) P ( k ) \pmb P(k) P(k) 求偏导得到的子式等于 0,即
∂ P ( k ) ∂ K ( k ) = 2 [ I − K ( k ) H ( k ) ] P ( k − 1 ) [ − H T ( k ) ] + 2 K ( k ) R ( k ) = 0 (4) \frac{\partial\pmb P(k)}{\partial\pmb K(k)} = 2\Big[\pmb I-\pmb K(k)\pmb H(k)\Big]\pmb P(k-1)\Big[-\pmb H^T(k)\Big] + 2\pmb K(k)\pmb R(k)=0\tag{4} K(k)P(k)=2[IK(k)H(k)]P(k1)[HT(k)]+2K(k)R(k)=0(4)

整理可得
K ( k ) = P ( k − 1 ) H T ( k ) [ R ( k ) + H ( k ) P ( k − 1 ) H T ( k ) ] − 1 (5) \pmb K(k)=\pmb P(k-1)\pmb H^T(k)\Big[\pmb R(k)+\pmb H(k)\pmb P(k-1)\pmb H^T(k)\Big]^{-1}\tag{5} K(k)=P(k1)HT(k)[R(k)+H(k)P(k1)HT(k)]1(5)

这个答案初看起来令人惊讶,和已经得到的滤波增益 K ( k ) = M k H T ( k ) R − 1 ( k ) \pmb K(k)=\pmb M_k\pmb H^T(k)\pmb R^{-1}(k) K(k)=MkHT(k)R1(k) 是不同的,一个包含 M k \pmb M_k Mk,另一个包含 P ( k − 1 ) \pmb P(k-1) P(k1)。但下面2个结论(证明方法见附录(有空再补充吧))却表明这两个公式是等价的。

  1. 若考虑 W ( k ) = R − 1 ( k ) \pmb W(k)=\pmb R^{-1}(k) W(k)=R1(k),则 M k \pmb M_k Mk 实际上是估计方差 P ( k ) \pmb P(k) P(k),按照式(1),估计方差也满足 P − 1 ( k ) = P − 1 ( k − 1 ) + H T ( k ) R − 1 ( k ) H ( k ) \pmb P^{-1}(k)=\pmb P^{-1}(k-1) + \pmb H^T(k)\pmb R^{-1}(k)\pmb H(k) P1(k)=P1(k1)+HT(k)R1(k)H(k)
  2. 若用 P ( k ) \pmb P(k) P(k) 来代替式(1)中的 M k \pmb M_k Mk,则式(5)所表达的滤波增益是等价的。

到这里,可以得到如下结论,利用最小二乘性能指标得到的估计方法:
θ ^ ( k ) = θ ^ ( k − 1 ) + K ( k ) [ Z ( k ) − H ( k ) θ ^ ( k − 1 ) ] (6) \hat{\pmb\theta}(k)=\hat{\pmb\theta}(k-1)+\pmb K(k)\left[Z(k)-\pmb H(k)\hat{\pmb\theta}(k-1) \right]\tag{6} θ^(k)=θ^(k1)+K(k)[Z(k)H(k)θ^(k1)](6)

可以得到最小的估计方差 P ( k ) \pmb P(k) P(k),其中滤波增益 K ( k ) \pmb K(k) K(k) 有以下两种不同的计算方法:
K ( k ) = M k H T ( k ) R − 1 ( k ) K ( k ) = P ( k − 1 ) H T ( k ) [ R ( k ) + H ( k ) P ( k − 1 ) H T ( k ) ] − 1 (7) \begin{aligned} \pmb K(k)&=\pmb M_k\pmb H^T(k)\pmb R^{-1}(k)\\[1ex] \pmb K(k)=\pmb P(k-1)\pmb H^T&(k)\Big[\pmb R(k)+\pmb H(k)\pmb P(k-1)\pmb H^T(k)\Big]^{-1} \end{aligned}\tag{7} K(k)K(k)=P(k1)HT=MkHT(k)R1(k)(k)[R(k)+H(k)P(k1)HT(k)]1(7)

估计方差 P ( k ) \pmb P(k) P(k) 可以使用如下两种求法来计算:
P ( k ) = [ P − 1 ( k − 1 ) + H T ( k ) R − 1 ( k ) H ( k ) ] − 1 (8) \pmb P(k)=\Big[\pmb P^{-1}(k-1) + \pmb H^T(k)\pmb R^{-1}(k)\pmb H(k)\Big]^{-1}\tag{8} P(k)=[P1(k1)+HT(k)R1(k)H(k)]1(8)

P ( k ) = [ I − K ( k ) H ( k ) ] P ( k − 1 ) [ I − K ( k ) H ( k ) ] T + K ( k ) R ( k ) K T ( k ) (9) \pmb P(k)=\Big[\pmb I-\pmb K(k)\pmb H(k)\Big]\pmb P(k-1)\Big[\pmb I-\pmb K(k)\pmb H(k)\Big]^T + \pmb K(k)\pmb R(k)\pmb K^T(k)\tag{9} P(k)=[IK(k)H(k)]P(k1)[IK(k)H(k)]T+K(k)R(k)KT(k)(9)

在附录中还提到了下面的估计方差 P ( k ) \pmb P(k) P(k) 计算方法:
P ( k ) = [ I − K ( k ) H ( k ) ] P ( k − 1 ) (10) \pmb P(k)=\Big[\pmb I-\pmb K(k)\pmb H(k)\Big]\pmb P(k-1)\tag{10} P(k)=[IK(k)H(k)]P(k1)(10)

在上面的三个计算 P ( k ) \pmb P(k) P(k) 的公式中,式(10)是一个比较简单的表达式,但是数值计算问题可能导致 P ( k ) \pmb P(k) P(k) 不是正定的,即使 P ( k − 1 ) \pmb P(k-1) P(k1) R ( k ) \pmb R(k) R(k) 都是正定的。式(9)虽然复杂,但是却可以保证 P ( k ) \pmb P(k) P(k) 是正定的,与理论解一致,而式(8)需要三次矩阵求逆计算,因此计算复杂,需要占用更多的计算资源,但在多传感器状态融合估计中可以使融合公式具有统一形式,所以经常在状态融合估计方法中使用。

  • 8
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值