3.场(field)

目录

1.复习

2.引言 

3.数量场

1.概念

2.例题 

4.矢量场

1.概念

2.例题 

5.坐标变换和坐标单位矢

1.坐标变换

2.单位矢


1.复习

2.引言 

如果说矢量分析研究的是矢量的时间变化,那么场就是它的空间变化.

场是客观存在的,杨振宁先生在总结20世纪物理学时,明确指出:"场和对称性" 是两个极为重要的

革命性概念

但是场是否真的存在,人们也仅仅是根据,物体处在电场或者磁场中所受到力,但周围并没有直接

接触的物体而猜想存在的.

直到法拉第改进奥斯特的实验,用磁粉替代磁针,我们才发现分布在空间的场,并且得到了直观的

磁力线

最一般的情况下,场是随时间t变化的,不过我们还是从简单到复杂,先研究清楚稳态场,即场不

随时间t变化的情况,再研究时变场.

思想:

从简单入手,再推广到复杂

从数量入手,再推广到矢量 

3.数量场

1.概念

在空间(space)中,数量函数u随点M变化

场是客观的,建立坐标系后却是主观的.

原点选取在不同位置,得到的点的坐标是不一样的.

不过有一样东西始终保持不变,就是它所对应的值,所以,我们要抓住不变量来研究.

至此我们就要引入一个关键的概念——等值面

将所有值相等的点连在一起,就可以构成一个面,我们将其称之为等值面.

比如说空间中温度场就是一个典型的数量场,每一个点都有它所对应的温度,我们将温度相同的点

连在一起,构成的面,我们称之为等温面

等值面有两大典型特征

第一.空间中的每一个点均属于一个等值面(一个点或者一条线,都可以看作一个面,这里的面是广

义的)

第二.不同等值面互不相交,即每一个点只属于一个等值面(函数不可能一个点有多个值对应)

2.例题 

例1.

山脉我们知道也是三维分布的,每一点都有其对应的高度(当然这是已经确定好一个基准平面下)

将相同高度的点连在一起,就可以构成等高线

 例2.

电场中的电位是一个标量,其实就是数量,不同点的电位就构成了电位场

现在我们想要研究点电荷产生的电位场,其实就是研究等位面.

 例3

推导二维带电无限长导线所产生的等位面.

.

还有一点需要注意的,电位对于一个三维问题来说,通常选取无穷远作为零电位点,但是二维问题

却不同,不能选择无穷远点为零电位点.

比如上面的例3,假如选取无穷远处的点作为零电位点,那r = 0,也就是导线上,由电位方程可以得

到,此时电位是无穷大的,而由于导线是无限长的,那在无穷远处,就会出现一点,即是零点位

点,又是无穷大的点位点,显然发生矛盾

4.矢量场

1.概念

有了数量场,我们就可以类比出矢量场的概念

在空间(space)中,矢量函数u随点M变化

 

同样的,原点选取在不同位置,得到的矢量坐标是不一样的.

我们要像数量场一样抓住不变量来研究,对应矢量场就是我们的矢线

我们将矢量与点一一对应,将点相连就构成了矢线,当然这些点并不是随便连的,而是需要满足

dr//A(该点的矢量),即线上的每一个点,都与该点的矢量相切

同样的,矢线也有几大典型特征

1.矢线有方向,也有大小

2.矢线有起点(源),也有终点(无穷远处也能看作是终点)

3.空间中的每一个点都只属于一根矢线,除源奇异点外(矢线互不相交)

PS:矢线和矢端曲线是完全两个不同的定义

 

2.例题 

例1

我们可以简单看一个例题,求解点电荷产生的矢线(电场线)分布

先写出点电荷产生的电场强度方程

结合矢线的定义,任一一点的切线都和 

 

 

其中有两点需要指出

1.点电荷产生的电场,其大小是按照r的平方进行衰减的

2.点电荷的电力线图像是无旋的,是一个向外发散的图线 

例2

 

 

5.坐标变换和坐标单位矢

1.坐标变换

矩阵和向量是一一对应的,任意一个向量,都可以表示为矩阵的形式

以二维向量举例,两者对应关系可以这样表示

 现在我们转动坐标轴,使其变化某个角度

将原本属于y的分量投影到新的x‘轴,x分量投影到新的x'轴,就可以表示出x'分量

(同理y'分量也是这样操作)

 

 

我们又知道点积可以用矩阵的方式表示

 

于是我们可以得到下面的关系式

  

上述最终表达式指出,点积是坐标转动的不变量

特别地,当A = B,则长度是坐标转动地不变量 

2.单位矢

在上一章我们讲到过,直角坐标系的单位矢不参与积分,导数外,对于像柱坐标系,球坐标系等等

坐标系,其单位矢都是要参与积分的.

如何解决这类问题呢?

就是将变化的单位矢,转变为我们熟悉的直角坐标系单位矢

 

同样是投影,同样把新的坐标矢,类比于上面的新坐标系

就可以将变换的单位矢,用不变单位矢来表示,从而使变化单位矢能够参与微积分

 

对于不同的参数对单位矢进行微积分,其结果我们也可以发现,不再单纯为0,甚至有可能改变单

位矢,由  

 

二阶导数也是同样的操作,其实就是相当于先求一阶导,再对相应的一阶导重复操作而已

这个结论,在电磁场计算中其实经常遇到

比如说下面的题目

 

很多教材或者讲解视频,利用的都是对称性,所有最后产生的电场,只存在z的分量

但实际上,从数学方面也可以解释

 

但是将其转变为不变单位矢进行微积分后,会发现这一项,其实就等于0,毕竟sin,cos沿一周期的

面积就是0

 

所以最后只要计算z分量即可,而ez不参与积分,可以直接提到积分外面来

  

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值