部署YOLOv5算法在NVIDIA Jetson Nano上并使用TensorRT和DeepStream进行加速涉及几个关键步骤。下面是一个详细的指南:
步骤 1: 准备YOLOv5模型
训练或下载预训练模型:首先,你需要有一个YOLOv5模型。你可以自己训练一个模型,或者使用从YOLOv5的GitHub仓库下载的预训练模型。
git clone -b v7.0 https://github.com/ultralytics/yolov5.git
进入yolo目录
cd yolov5
下载权重:
wget https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt
这将下载一个yolov5.pt
文件
转换模型格式:YOLOv5默认使用PyTorch框架。为了使用TensorRT优化,你需要将PyTorch模型转换成ONNX格式。使用以下命令可以完成这一转换:
python export.py