最强发文神器:Transformer+GCN!双热点结合轻松发一区!

GCN结合Transformer是一种创新的深度学习模型,它通过融合图卷积网络(GCN)对图结构数据的强大建模能力与Transformer在处理序列数据时的卓越性能,实现了对复杂图结构数据的深度理解和高效处理。

因此,这个策略在很多实际应用场景中非常好用,很多GCN结合Transformer的出色成果都能证明。在GCN(图卷积网络)结合Transformer的最新工作中,就展现出了其强大的性能和广泛的应用潜力:

MP-GT:通过结合GCN和Transformer方法来增强App使用预测的准确性,实现了74.02%的性能提升,且训练时间减少了79.47%。

MotionAGFormer:结合GCNFormer和Transformer以捕捉复杂的局部关节关系,提高3D姿势估计的准确性。实验表明其参数减少了3/4,计算效率涨了3倍。

为了方便大家能够更好的掌握这个创新思路,然后运用到自己的文章中,我为大家整理了最新的Transformer+GCN研究论文!

需要的同学关注工粽号【沃的顶会】 回复 GCN结合 即可全部领取

Tran-GCN: 

A Transformer-Enhanced Graph Convolutional Network for Person Re-Identification in Monitoring Videos

文章解析

本文提出了一种名为Tran-GCN的模型,旨在通过整合局部特征、全局依赖关系和行人姿态信息来提高监控视频中的行人重识别性能。

该模型包括四个关键组件:姿态估计学习分支、Transformer学习分支、卷积学习分支和图卷积模块,分别用于提取行人姿态信息、学习全局依赖关系、提取局部特征和融合多种信息。

创新点

1.提出了一种新的Tran-GCN模型,结合了Transformer和图卷积网络的优势。

2.通过姿态估计学习分支提取行人的姿态信息,增强了模型对姿态变化的鲁棒性。

3.引入了Transformer学习分支,有效捕捉局部特征之间的全局依赖关系。

4.设计了图卷积模块,整合局部特征、全局特征和身体信息,提高了识别精度。

需要的同学关注工粽号【沃的顶会】 回复 GCN结合 即可全部领取

Integrating Features for Recognizing Human Activities through Optimized Parameters in Graph Convolutional Networks and Transformer Architectures

文章解析

本文研究了特征融合技术对人类活动识别准确率的影响。通过使用四个公开数据集(HuGaDB、PKU-MMD、LARa和TUG),评估了Transformer模型和参数优化的图卷积网络(PO-GCN)的性能。

实验结果表明,PO-GCN在多个数据集上表现优于传统模型,特别是在HuGaDB和TUG数据集上分别提高了2.3%和5%的准确率。特征融合技术显著提升了模型的识别能力。

创新点

1.提出了参数优化的图卷积网络(PO-GCN)模型,显著提升了活动识别的准确率。

2.通过特征融合技术,结合了Transformer模型和PO-GCN模型的优势,进一步提高了识别性能。

3.在多个公开数据集上验证了模型的有效性,展示了其在不同场景下的泛化能力。

需要的同学关注工粽号【沃的顶会】 回复 GCN结合 即可全部领取

Spatial-temporal Graph Convolutional Networks with Diversified Transformation for Dynamic Graph Representation Learning

文章解析

本文提出了一种新的空间-时间图卷积网络(STGCNDT),通过引入张量M-乘积和三种不同的变换方案(离散傅里叶变换、离散余弦变换和哈尔小波变换)来捕捉动态图中的复杂时间模式。

该模型能够有效地整合时空信息,避免了现有动态图卷积网络中时空信息分离的问题,并在通信网络中的链路权重估计任务上显著优于现有模型。

图片

创新点

1.提出了STGCNDT模型,通过张量M-乘积和多样化变换方案有效捕捉动态图中的复杂时间模式。

2.设计了统一的图张量卷积网络(GTCN),避免了时空信息的分离和损失。

3.引入了三种变换方案(离散傅里叶变换、离散余弦变换和哈尔小波变换),增强了模型的表示能力。

### STGCNTransformer架构的融合及其比较 #### 融合STGCNTransformer的方法 为了更好地捕捉交通流中的时空特性并提高预测精度,可以将空间-时间图卷积网络(STGCN)与Transformer架构相结合。这种组合能够充分利用两者的优势,在保持原有模型对局部结构敏感性的基础上引入全局依赖建模能力。 在具体实现方面,可以通过以下方式构建混合框架: 1. **输入表示** 使用节点特征矩阵作为初始输入给定到整个网络中去。对于每个时刻t下的城市道路网路G=(V,E),其中V代表路口集合而E则对应路段连接关系,则有X∈R^(N×D)来表达该瞬间所有结点的状态向量[D维属性值];这里N是指总的交叉口数目[^2]。 2. **编码器部分** - 首先通过多层Graph Convolution Layer提取出每帧图像里蕴含着的空间模式; - 接下来利用Temporal Attention Mechanism关注不同时刻间存在的内在联系,从而形成序列化的隐状态H={h_1, h_2,... ,h_T} ∈ R^(T × N × C)[^2]。 3. **解码器组件** 解码阶段主要由若干个标准Transformers构成,负责接收来自前序模块产生的上下文信息,并据此推测未来段时间内的车流量变化趋势。特别地,在此过程中还可以加入Position-wise Feed Forward Networks以及Layer Normalization等操作进步增强系统的稳定性和泛化性能。 4. **输出层设计** 经过系列复杂的计算之后最终得到的结果Ŷ 将会是个形状类似于(Batch_Size × Prediction_Horizon × Num_of_Nodes) 的张量对象,其各个元素分别指示相应位置处预期生的车辆通行数量。 ```python import torch.nn as nn from stgcn import SpatialTemporalConvBlock # 假设这是自定义的个包 class ASTransformer(nn.Module): def __init__(self, num_nodes, input_dim, hidden_dim, output_dim, kernel_size=3, dropout=0.3): super(ASTransformer, self).__init__() self.spatial_temporal_conv = SpatialTemporalConvBlock( in_channels=input_dim, out_channels=hidden_dim, kernel_size=kernel_size, dropout=dropout ) self.transformer_encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_dim * num_nodes, nhead=8) self.transformer_decoder_layer = nn.TransformerDecoderLayer(d_model=hidden_dim * num_nodes, nhead=8) self.fc_out = nn.Linear(hidden_dim * num_nodes, output_dim) def forward(self, src, tgt): batch_size, seq_len, _, _ = src.size() spatial_temporal_features = self.spatial_temporal_conv(src).view(batch_size, seq_len, -1) memory = self.transformer_encoder_layer(spatial_temporal_features) decoder_output = self.transformer_decoder_layer(tgt.view(batch_size, -1), memory) prediction = self.fc_out(decoder_output).reshape(batch_size, seq_len, -1) return prediction ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值