李沐 感知机【动手学深度学习v2】

最简单的深度网络称为多层感知机

多层感知机由多层神经元组成,每一层与它的上一层相连,从中接收输入
同时每一层也与它的下一层相连,影响当前层的神经元
当我们训练容量较大的模型时,我们面临着*过拟合*的风险。
因此,本章将从基本的概念介绍开始讲起,包括*过拟合*、*欠拟合*和模型选择。
为了解决这些问题,本章将介绍*权重衰减*和*暂退法*等正则化技术。
我们还将讨论数值稳定性和参数初始化相关的问题,
这些问题是成功训练深度网络的关键。
在本章的最后,我们将把所介绍的内容应用到一个真实的案例:房价预测。
关于模型计算性能、可伸缩性和效率相关的问题,我们将放在后面的章节中讨论。

感知机

感知机实际是一个二分类的问题.

\sigma有多种选择,例如上面的输出可以修改为当x<=0时,\sigma(x)=-1。

训练感知机

y_{i} [ <\omega, x_{i}>+ b ]≤ 0: 左边是标签值,右边是预测值,相当于y*\hat{y}≤0。也就是说,当感知机小于等于0时预测错误,即预测值和观测值异号时表示分类错误。此时,需要更新\omega和b,直到所有的类都分类正确。

更新参数时加上的部分是损失函数分别对\omega和b求导得到的。

这条max语句对应上面的if语句。根据取值判断分类是否正确,是否满足if语句以及更新参数。

举个例子

分类:狗和猫

黑色的斜线就是当前的分类情况。

添加一只狗,继续进行分类,需要更新参数。

继续添加狗和猫,不断地更新参数,直到所有的分类都正确。

收敛定理

其中,\rho > 0

XOR 问题(Minsky& Papert,1969)


感知机不能拟合 XOR函数,它只能产生线性分割面

总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值