01 双重差分与三重差分分析法

双重差分分析方法在经济领域多用于对于公共政策或项目实施效果的评价。

1 标准双重差分模型估计原理

1.1 估计原理

1.1.1 原理

标准DID原理

1.1.2 模型

DID模型

1.1.3 绝对值差分vs相对值差分

在实证过程中,尽管用了“差分的差”,但是得到的依旧是绝对值,因此用相对量(如增长率)的差分更合理。实际操作是:对绝对值取对数,再进行第一次和第二次差分。如
是用相对量即取对数进行差分

1.2 假定

  • 假定1:“平行趋势假定”(parallel trend assumption)。DID最为重要和关键的前提条件:共同趋势(Common Trends),两组之间可以存在一定的差异,但是双重差分方法要求这种差异不随着时间产生变化,也就是说,处理组和对照组在政策实施之前必须具有相同的发展趋势。这是DID的最大优点,即可以部分地缓解因 “选择偏差”(selection bias)而导致的内生性(endogeneity)

  • 假定2:暂时性冲击与政策虚拟变量不相关。这是保证双向固定效应为一致估计量(consist estimator)的重要条件。在此,可以允许个体固定效应与政策虚拟变量相关(可通过双重差分或组内变换消去,或通过LSDV法控制)。

1.3 操作实例

1.3.1 读入所需数据,生成政策前后以及控制组虚拟变量,并将它们相乘产生交互项

1.3.1.1 法1
use "http://dss.princeton.edu/training/Panel101.dta", clear
gen time = (year>=1994) & !missing(year)      //设置虚拟变量,政策执行时间为1994年
gen treated = (country>4) & !missing(country) //生成地区的虚拟变量
gen did = time*treated                        //产生交互项
reg y time treated did, r                     //随后将这三个变量作为解释变量,y作为被解释变量进行回归

在这里插入图片描述
did的系数显著为负,表明政策实施对Y有显著的(10%显著性水平下)负效应

1.3.1.2 法2 结果怎么看,还不知道
ssc install diff  // 下载外部命令
diff y, t(treated) p(time)
/* diff命令的语法格式:
 diff outcome_var [if] [in] [weight] ,[ options]
 “outcome_var”表示结果变量
 option中有两个必选:
 “treat(处理变量) ” (0: controls; 1:treated)
 “period(实验期虚拟变量)”(1=实验期,0=非实验期)
 其他option
 cov(varlist),协变量,加上kernel可以估计倾向得分
 kernel, 执行双重差分倾向得分匹配
 id(varname),kernel选项要求使用
 qdid(quantile),执行分位数双重差分
 pscore(varname) 提供倾向得分
 logit,进行倾向得分计算,默认probit回归
 ddd(varname),三重差分
 */

在这里插入图片描述
关注两种方法的结果,发现交乘项的不论是系数还是t值都一致

2 面板数据DID模型

双重差分的面板估计,仍然用OLS估计
面板DID原理
注意,模型中不需要加入处理虚拟变量treati。因为模型中已加入个体固定效应ui,包含更多信息,是控制个体不随时间变化的特征。而treati仅控制不同组个体不随时间变化的特征,若ui和treati,同时加入,会产生多重共线性问题。

同理,模型中也不需要加入处理期虚拟变量posti,因为模型中加入了时间固定效应λtλt包含更多的信息,控制每一期的时间效应,而postt仅控制了处理期前后的时间效应,若λt和postt同时加入,会产生多重共线性问题。

交叉乘积项系数θ表示处理效应。
stata处理上,做好变量处理,其余见固定效应模型与stata的实现

3 三重差分(DDD)分析

3.1 DDD适用于

平行趋势检验未获通过,即处理组和控制组因非干预措施引起的目标值增长速度不同时,做**三重差分(DDD)**分析就是一个可选方法。
在这里插入图片描述

3.2 标准三重差分回归模型

在这里插入图片描述
在这里插入图片描述
H表示除了研究的政策之外,可能导致结果变量Y变化的其他因素。
β4表示要研究的政策的处理效应,β7表示某因素在-研究的政策-的干预后对Y的影响

3.3 stata操作

*==========三重差分DDD=============
* 其实就是在双重差分基础上多了一些交乘项
* 假设y_bin变量是另外一个影响因素
gen did_y = did*y_bin
gen time_y = time*y_bin
gen treated_y = treated*y_bin
* 法1 reg回归
reg y time treated y_bin did time_y treated_y did_y, r
* 法2 diff 添加ddd选项来说明导致平行趋势检验没通过的变量是哪个
diff y, t(treated) p(time) ddd(y_bin) 

4 面板数据多期DID模型

传统DID假定处理组的所有个体开始受到政策冲击的时点完全相同,但有时会出现处理组个体接受处理时间点不一致的情况,多期DID (Time-varying DID),也被称为多时点DID 或异时DID。
当描述个体处理期时点不完全一致的情形,面板数据DID模型中的postt,替换为postit,即处理期的时间点因个体i而异。模型如下:
在这里插入图片描述
在这里插入图片描述
如何将数据和基本信息匹配

*============多期DID==============
* 基础数据和面板数据对应
use Panel101.dta, clear 
joinby country using DDD基础信息.dta
gen t = 0
replace t=1 if year >= treatime
gen did = treated*t
* 之后的回归用该did变量代替前面的did进行标准DID回归或者DDD回归、固定效应即可

* ------------------------ 以下不确定------------------------ 
gen time = (year>=1994) & !missing(year)      //设置虚拟变量,政策执行时间为1994年

* 法1 考虑多期
reg y time treated did, r     
est store mutiDID1 
* 法2 考虑多期 diff 
diff y, t(treated) p(t) 
est store mutiDID2 
* 法3 不考虑多期
gen did2 = time*treated 
reg y time treated did2, r     
est store standDID1 
* 法2 不考虑多期 diff 
diff y, t(treated) p(time) 
est store standDID2 

esttab mutiDID1 mutiDID2 standDID1 standDID2

对比结果如图所示,考虑多期时用diff显得很奇怪,是否代表多期DID不能用diff?
在这里插入图片描述

5 内生性和稳健性检验

5.1 平行趋势检验

平行趋势检验

在介绍完DID的基本思想和模型设定后,我们再来说说DID的稳健性检验,也就是要想办法证实所有效应确实是由政策实施所导致的。
所谓共同趋势或者平行趋势,是指处理组和控制组在政策实施之前必须具有相同的发展趋势。
如果不满足这一条件,那么两次差分得出的政策效应β就不完全是真实的政策效应,其中有一部分是由处理组和控制组本身的差异所带来的。如果平行趋势假设成立,那么在政策时点之前,处理组和控制组应该不存在显著差异。

5.1.1 时间趋势图

绘制处理组和控制组的y的均值的时间趋势 绘图法检验 政策前几年,置信区间包括0,即不显著,接受系数为0的原假设;政策后,置信区间不包括0,显著,拒绝系数为0的原假设,说明政策实施后处理组和控制组发生了不同的变化。实际上,即使政策实施后的好几年才显著不为0,也可以表示通过了平行趋势检验,这是由于考虑到了政策实施有滞后效应。

5.1.2 事件研究法

生成年份虚拟变量yearj与处理组虚拟变量treati的交互项,加入模型中进行回归(M、N分别表示政策前和政策后的期数),那么交互项treatixYEARj的系数δj衡量的就是第j期处理组和控制组之间的差异。

step1 生成年份虚拟变量与实验组虚拟变量的交互项,此处选在政策前后各3年进行对比。
gen period = year - 1994   // 计算距离政策实施前后的年份
forvalues i = 3(-1)1{     // 政策发生之前,向前做三期
  gen pre_`i' = (period == -`i' & treated == 1) 
}
gen current = (period == 0 & treated == 1)
forvalues j = 1(1)3{     // 政策发生之后,向后做三期
  gen  time_`j' = (period == `j' & treated == 1)
 }
 drop pre_1               // 为了避免多重共线性,drop掉一期
step2 随后将这些交互项作为解释变量进行回归,并将结果储存在reg中以备后续检验。
xtreg y time treated pre_* current time_* i.year, fe  
est sto reg
step3 采用coefplot命令进行绘图
coefplot reg,  ///
keep(pre_* current time_*)  ///  //横坐标
vertical ///
recast(connect) ///
yline(0) xline(3, lp(dash)) ///
addplot(line @b @at) ///
ciopts(lpattern(dash) ///
recast(rcap) ///
msize(medium)) msymbol(circle_hollow) scheme(simono)

绘图判断平行趋势 结果发现系数在政策前的确在0附近波动,而政策后一年系数显著为负,但很快又回到0附近。这说明实验组和控制组的确是可以进行比较的,而政策效果可能出现在颁布后一年,随后又很快消失。

5.2 安慰剂检验

安慰剂检验

### 回答1: 手机PDF编辑软件是一种方便实用的工具,可以帮助用户在移动设备上轻松编辑和管理PDF文档。对于这样一款软件来说,如果会员可以永久免费使用,将是一件非常吸引人的事情。 首先,永久免费的会员权益意味着用户不需要支付任何费用即可享受软件的所有功能和服务。这将对那些需要频繁编辑PDF文件的用户来说非常有吸引力,他们可以在不花费额外金钱的情况下获得所需的工具和功能。 其次,永久免费的会员权益还可以带来更好的用户体验。免费的会员权益通常意味着用户可以免受广告的干扰,不会被强制性地购买其他付费服务。这将更好地保护用户的隐私和权益,让用户使用软件时更加舒适和顺畅。 而且,对于开发者来说,提供永久免费的会员服务也可以增加用户的粘性和忠诚度。因为用户可以无限制地免费使用软件,他们可能更倾向于长期使用该软件,这将为开发者带来持续的用户流量和口碑推广,从而进一步促进软件的发展和改进。 总之,提供会员永久免费的手机PDF编辑软件对于用户和开发者来说都具有很多优点。用户可以免费使用所需的功能、保护隐私和权益,而开发者则可以增加用户粘性和口碑推广。这样的软件将成为用户的首选,也能为开发者带来更大的发展空间。 ### 回答2: 目前市面上有很多手机PDF编辑软件,但是很少有能够提供永久免费会员服务的。一般情况下,软件公司或开发者需要通过向用户收取会员费用来获取盈利。然而,如果有一款手机PDF编辑软件能够提供永久免费的会员服务,它可能具备以下特点: 首先,该软件可能会采用其他盈利模式,例如广告、捐赠或其他公司合作,通过其他途径获取收入。这样的模式可能会允许用户免费使用会员服务,而软件公司通过其他方式获得利润。 其次,该软件可能会注重用户体验和市场份额,以吸引更多的用户。通过免费会员服务,软件公司可以吸引更多的用户,增加软件的市场份额,并从用户规模扩大中获得其他利益或合作机会。 此外,该软件可能会注重长期发展,目标是用户建立长期的合作关系。通过提供永久免费会员服务,软件公司可以向用户传递一种承诺,表达他们对于用户体验和长期满意度的重视。这样的做法有助于建立用户信任,增加用户粘性,提高软件的品牌忠诚度。 总的来说,开发一款具备会员永久免费服务的手机PDF编辑软件是一项挑战。但是,通过寻找其他盈利模式、注重用户体验和市场份额以及注重长期发展,软件公司可能会开辟出一条不同于传统的商业模式,实现软件的长期持续发展。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值