Matlab编程资源库(18)符号微积分

一、符号极限

limit 函数的调用格式为:
(1) limit(f,x,a) :求符号函数 f(x) 的极限值。即计算当 变量 x 趋近于常数 a 时, f(x) 函数的极限值。
(2) limit(f,a) :求符号函数 f(x) 的极限值。由于没有 指定符号函数 f(x) 的自变量,则使用该格式时,符 号函数 f(x) 的变量为函数 findsym(f) 确定的默认自 变量,即变量 x 趋近于 a
(3) limit(f) :求符号函数 f(x) 的极限值。 符号函数f(x)的变量为函数findsym(f)确定的默认变量没有指定变量的目标值时系统默认变量趋近于0即a=0的情况
(4) limit(f,x,a,'right') :求符号函数 f 的极限值。 'right' 表示变 x 从右边趋近于 a
(5) limit(f,x,a,‘left’) :求符号函数 f 的极限值。 ‘left’ 表示变量 x 从左边趋近于 a
9-1 求下列极限。
极限 1
syms a m x;
f=(x*(exp(sin(x))+1)-2*(exp(tan(x))-1))/(x+a);
limit(f,x,a)
ans = (1/2*a*exp(sin(a))+1/2*a-exp(tan(a))+1)/a

运行结果 :

极限2

syms x t;
limit((1+2*t/x)^(3*x),x,inf)
ans = exp(6*t)

 运行结果 :

极限 3
syms x;
f=x*(sqrt(x^2+1)-x);
limit(f,x,inf,'left')
ans = 1/2

 运行结果 :

极限 4
syms x;
f=(sqrt(x)-sqrt(2)-sqrt(x-2))/sqrt(x*x-4);
limit(f,x,2,'right')
ans = -1/2

 运行结果 :

二、符号导数

diff 函数用于对符号表达式求导数。该函数的一般调用格式 为:
diff(s) :没有指定变量和导数阶数,则系统按 findsym 函数指 示的默认变量对符号表达式 s 求一阶导数。
diff(s,'v') :以 v 为自变量,对符号表达式 s 求一阶导数
diff(s,n) :按 findsym 函数指示的默认变量对符号表达式 s 求 n阶导数 n 为正整数。
diff(s,'v',n) 以v为自变量 ,对符号表达式 s n 阶导数。

三、符号积分

符号积分由函数 int 来实现。该函数的一般调用格式为:
int(s) :没有指定积分变量和积分阶数时,系统按 findsym 数指示的默认变量对被积函数或符号表达式 s 求不定积分。
int(s,v) :以 v 为自变量,对被积函数或符号表达式 s 求不定积分
int(s,v,a,b) 求定积分运算
a,b分别表示定积分的下限和上 限。该函数求被积函数在区间 [a,b] 上的定积分。 a b 可以 是两个具体的数,也可以是一个符号表达式,还可以是无 (inf) 。当函数 f 关于变量 x 在闭区间 [a,b] 上可积时,函数 返回一个定积分结果。当 a,b 中有一个是 inf 时,函数返回 一个广义积分。当 a,b 中有一个符号表达式时,函数返回 一个符号函数。

四、积分变换

常见的积分变换有傅立叶变换、拉普拉斯变换和 Z 变换。
1 .傅立叶 (Fourier) 变换
MATLAB 中,进行 傅立叶变换 的函数是:
fourier (f,x,t) :求函数 f(x) 傅立叶像函数F(t)
ifourier (F,t,x) :求傅立叶像函数 F(t) 原函数f(x)
2 .拉普拉斯 (Laplace) 变换
MATLAB 中,进行 拉普拉斯变换 的函数是:
laplace (fx,x,t) :求函数 f(x) 拉普拉斯像函数F(t)
ilaplace (Fw,t,x) :求拉普拉斯像函数 F(t) 原函数f(x)
3 Z 变换
当函数 f(x) 呈现为一个离散的数列 f(n) 时,对数列 f(n) 进行 z 变换 MATLAB 函数是:
ztrans (fn,n,z) :求 fn Z变换像函数F(z)
iztrans (Fz,z,n) :求 Fz z变换原函数f(n)
  结语 
不要等待机会
而要创造机会
!!!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT 青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值