一、符号极限
limit 函数的调用格式为:(1) limit(f,x,a) :求符号函数 f(x) 的极限值。即计算当 变量 x 趋近于常数 a 时, f(x) 函数的极限值。(2) limit(f,a) :求符号函数 f(x) 的极限值。由于没有 指定符号函数 f(x) 的自变量,则使用该格式时,符 号函数 f(x) 的变量为函数 findsym(f) 确定的默认自 变量,即变量 x 趋近于 a 。(3) limit(f) :求符号函数 f(x) 的极限值。 符号函数f(x)的变量为函数findsym(f)确定的默认变量 ; 没有指定变量的目标值时 , 系统默认变量趋近于0 , 即a=0的情况 。(4) limit(f,x,a,'right') :求符号函数 f 的极限值。 'right' 表示变 量 x 从右边趋近于 a 。(5) limit(f,x,a,‘left’) :求符号函数 f 的极限值。 ‘left’ 表示变量 x 从左边趋近于 a 。
例
9-1
求下列极限。
极限
1
:
syms a m x;
f=(x*(exp(sin(x))+1)-2*(exp(tan(x))-1))/(x+a);
limit(f,x,a)
ans = (1/2*a*exp(sin(a))+1/2*a-exp(tan(a))+1)/a
运行结果 :
极限2:
syms x t;
limit((1+2*t/x)^(3*x),x,inf)
ans = exp(6*t)
运行结果 :
极限
3
:
syms x;
f=x*(sqrt(x^2+1)-x);
limit(f,x,inf,'left')
ans = 1/2
运行结果 :
极限
4
:
syms x;
f=(sqrt(x)-sqrt(2)-sqrt(x-2))/sqrt(x*x-4);
limit(f,x,2,'right')
ans = -1/2
运行结果 :
二、符号导数
diff 函数用于对符号表达式求导数。该函数的一般调用格式 为:diff(s) :没有指定变量和导数阶数,则系统按 findsym 函数指 示的默认变量对符号表达式 s 求一阶导数。diff(s,'v') :以 v 为自变量,对符号表达式 s 求一阶导数 。diff(s,n) :按 findsym 函数指示的默认变量对符号表达式 s 求 n阶导数 , n 为正整数。diff(s,'v',n) : 以v为自变量 ,对符号表达式 s 求 n 阶导数。
三、符号积分
符号积分由函数 int 来实现。该函数的一般调用格式为:int(s) :没有指定积分变量和积分阶数时,系统按 findsym 函 数指示的默认变量对被积函数或符号表达式 s 求不定积分。int(s,v) :以 v 为自变量,对被积函数或符号表达式 s 求不定积分 。int(s,v,a,b) : 求定积分运算 。a,b分别表示定积分的下限和上 限。该函数求被积函数在区间 [a,b] 上的定积分。 a 和 b 可以 是两个具体的数,也可以是一个符号表达式,还可以是无 穷 (inf) 。当函数 f 关于变量 x 在闭区间 [a,b] 上可积时,函数 返回一个定积分结果。当 a,b 中有一个是 inf 时,函数返回 一个广义积分。当 a,b 中有一个符号表达式时,函数返回 一个符号函数。
四、积分变换
常见的积分变换有傅立叶变换、拉普拉斯变换和 Z 变换。1 .傅立叶 (Fourier) 变换在 MATLAB 中,进行 傅立叶变换 的函数是:fourier (f,x,t) :求函数 f(x) 的 傅立叶像函数F(t)ifourier (F,t,x) :求傅立叶像函数 F(t) 的 原函数f(x)2 .拉普拉斯 (Laplace) 变换在 MATLAB 中,进行 拉普拉斯变换 的函数是:laplace (fx,x,t) :求函数 f(x) 的 拉普拉斯像函数F(t)ilaplace (Fw,t,x) :求拉普拉斯像函数 F(t) 的 原函数f(x)3 . Z 变换当函数 f(x) 呈现为一个离散的数列 f(n) 时,对数列 f(n) 进行 z 变换 的 MATLAB 函数是:ztrans (fn,n,z) :求 fn 的 Z变换像函数F(z)iztrans (Fz,z,n) :求 Fz 的 z变换原函数f(n)
结语
不要等待机会而要创造机会!!!