计量专业常用计算公式汇总(二级注册计量师)

常用符号

符号读音含义LaTeX代码
Δ \Delta Δdélta差值,变化量\Delta
Σ \Sigma Σsǐgma求和符号\Sigma
σ \sigma σsǐgma标准差,变异数\sigma
. . . \sqrt{...} ... 平方根平方根\sqrt{...}
x ˉ \bar{x} xˉx bār平均值\bar{x}
ϵ \epsilon ϵèpsilon恒定系统误差\epsilon
τ \tau τtāu取样时间\tau
μ \mu μmju平均值,期望值\mu
∞ \infty īnfty无穷大\infty
Φ \Phi ΦFài累积分布函数\Phi
ϕ \phi ϕfài相位\phi
ν \nu ν频率\nu
π \pi πpài圆周率\pi
∫ \int ǐntəgrǐl积分\int

异号法消除系统恒定误差

单向测得值: d = a + ϵ , 单向测得值:d = a+\epsilon , 单向测得值:d=a+ϵ

消除了系统误差的测得值: a = d + d ′ 2 . 消除了系统误差的测得值:a=\frac{d+d'}{2}. 消除了系统误差的测得值:a=2d+d.

a : 不含系统误差的值 a:不含系统误差的值 a:不含系统误差的值

ϵ : 恒定系统误差 \epsilon:恒定系统误差 ϵ:恒定系统误差

d : 正向测量数据 d:正向测量数据 d:正向测量数据

d ′ = a − ϵ , d'=a-\epsilon, d=aϵ,

d ′ : 反向测量数据 d':反向测量数据 d:反向测量数据

交换法消除系统恒定误差

X = P P ′ . X=\sqrt{PP'}. X=PP .

X : 消除了系统误差的测得值 ( 几何平均值 ) X:消除了系统误差的测得值(几何平均值) X:消除了系统误差的测得值(几何平均值)

P : 正向测量数据 P:正向测量数据 P:正向测量数据

P ′ : 反向测量数据 P':反向测量数据 P:反向测量数据

替换法消除系统恒定误差

假设原始测量数据为 x i x_{i} xi(其中 i i i表示第 i i i次测量),恒定系统误差为 Δ \Delta Δ,那么真实的测量值应该是 x i − Δ x_i - \Delta xiΔ。如果我们能够通过替换法或其他方法确定这个恒定误差 Δ \Delta Δ,那么就可以通过从每次的测量结果中减去这个误差来得到更准确的测量值。

x corrected , i = x i − Δ . x_{\text{corrected}, i} = x_i - \Delta. xcorrected,i=xiΔ.

其中 x corrected , i x_{\text{corrected}, i} xcorrected,i是校正后的测量值。

修正值及修正因子计算

Δ = x ˉ − x s , \Delta=\bar{x}-x_{s}, Δ=xˉxs,

Δ : 测得值的系统误差估计值 \Delta:测得值的系统误差估计值 Δ:测得值的系统误差估计值

x ˉ : 未修正的测得值 \bar{x}:未修正的测得值 xˉ:未修正的测得值

x s : 标准值 x_{s}:标准值 xs:标准值

当对测量仪器的示值进行修正时, Δ \Delta Δ为仪器的示值误差

Δ = x − x s , \Delta=x-x_{s}, Δ=xxs,

x : 被评定的仪器的示值或标称值 x:被评定的仪器的示值或标称值 x:被评定的仪器的示值或标称值

x s : 标准装置给出的标准值 x_{s}:标准装置给出的标准值 xs:标准装置给出的标准值

则修正值 C C C

C = − Δ , C=-\Delta, C=Δ,

已修正的测得值 X C X_{C} XC

X C = x ˉ + C . X_{C}=\bar{x}+C. XC=xˉ+C.

修正因子计算公式:

C r = x s x ˉ . C_{r}=\frac{x_{s}}{\bar{x}}. Cr=xˉxs.

C r : 修正因子 C_{r}:修正因子 Cr:修正因子

x s : 标准值 x_{s}:标准值 xs:标准值

x ˉ : 未修正的测得值 \bar{x}:未修正的测得值 xˉ:未修正的测得值

已修正的测得值:

X c = C r x ˉ X_{c}=C_{r}\bar{x} Xc=Crxˉ

贝塞尔公式法计算实验标准偏差

s ( x ) = Σ i = 1 n ( x i − x ˉ ) 2 n − 1 s(x)=\sqrt{\frac{\Sigma_{i=1}^{n}(x_{i}-\bar{x})^{2}}{n-1}} s(x)=n1Σi=1n(xixˉ)2

s ( x ) : 观测值 x 的试验标准偏差 s(x):观测值x的试验标准偏差 s(x):观测值x的试验标准偏差

n : 样品数量 n:样品数量 n:样品数量

x i : 第 i 次得到的数据 x_{i}:第i次得到的数据 xi:i次得到的数据

x ˉ : n 个样品数量的算数平均值, x ˉ = 1 n Σ n i = 1 x i \bar{x}:n个样品数量的算数平均值,\bar{x}=\frac{1}{n}\Sigma^{i=1}_{n}x_{i} xˉ:n个样品数量的算数平均值,xˉ=n1Σni=1xi

其中 x i − x ˉ x_{i}-\bar{x} xixˉ为残差 v v v, n − 1 n-1 n1为自由度 ν \nu ν (LaTeX代码:\nu)

简化公式为: s ( x ) = Σ i = 1 n v ν s(x)=\sqrt{\frac{\Sigma_{i=1}^{n}v}{\nu}} s(x)=νΣi=1nv

格拉布斯准则剔除异常值

格拉布斯准则(Grubbs’ test)是一种用于检测单变量数据集中异常值(或称为离群值)的统计方法。该方法基于正态分布假设,并适用于样本量较小的情况。格拉布斯准则通过计算每个数据点与样本均值之间的标准化残差(即z-score的绝对值),并将其与格拉布斯临界值进行比较,以确定是否存在异常值。

格拉布斯准则的计算公式涉及几个关键步骤和参数:

  1. 计算样本均值 x ˉ \bar{x} xˉ和标准差 s s s

x ˉ = 1 n ∑ i = 1 n x i \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i xˉ=n1i=1nxi

s = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} s=n11i=1n(xixˉ)2

其中, x i x_i xi 是样本中的数据点, n n n是样本量。

  1. 计算每个数据点的标准化残差(也称为G值或格拉布斯统计量)。

G i = ∣ x i − x ˉ ∣ s G_i = \frac{|x_i - \bar{x}|}{s} Gi=sxixˉ

  1. 根据样本量 n n n和所选择的显著性水平 α \alpha α(通常为0.05或0.01),查找格拉布斯临界值。这个临界值通常可以在统计表中找到,或者通过特定的统计软件计算得出。
    ∣ x i − x ˉ ∣ s ≥ G ( a , n ) \frac{|x_{i}-\bar{x}|}{s}\geq G(a,n) sxixˉG(a,n)
  2. 将每个数据点的格拉布斯统计量与临界值进行比较。如果某个数据点的格拉布斯统计量超过了临界值,则可以将该数据点视为异常值。格拉布斯准则对于小样本量(如n<20)可能更为敏感,并且在使用时需要谨慎。此外,如果数据不符合正态分布假设,该方法的有效性可能会受到影响。

测量重复性引入的不确定度分量

s r = s ( x ) n s_{r}=\frac{s(x)}{\sqrt{n}} sr=n s(x)

测量复现性计算

s R = Σ i = 1 n ( x i − x ˉ ) 2 n − 1 s_{R}=\sqrt{\frac{\Sigma_{i=1}^{n}(x_{i}-\bar{x})^{2}}{n-1}} sR=n1Σi=1n(xixˉ)2

相对误差、绝对误差、引用误差和测量误差

  1. 绝对误差(Absolute Error):
    绝对误差是测量结果与真实值之间的差值。其计算公式为:
    绝对误差 = 测量结果 - 真实值
  2. 相对误差(Relative Error):
    相对误差是绝对误差与真实值的比值,通常以百分比的形式表示。其计算公式为:
    相对误差 = (绝对误差 / 真实值) * 100%
  3. 引用误差(Quoted Error):
    引用误差通常用于描述测量仪器的准确度,是绝对误差与测量仪器的特定值(如量程或满量程)之间的比值。其计算公式为:
    引用误差 = (绝对误差 / 测量仪器的特定值) * 100%
    例如,如果仪器的量程是作为特定值,则引用误差 = (绝对误差 / 量程) * 100%
  4. 测量误差(Measurement Error):
    测量误差是一个更广泛的概念,它包括了所有类型的误差,如系统误差、随机误差等。测量误差可以通过多次测量并取平均值来减小,但通常无法完全消除。测量误差的计算依赖于具体的测量场景和方法,并没有一个统一的公式。

使用阿伦方差表示的频率稳定度

σ y ( τ ) = 1 2 m Σ i = 1 m [ y i + 1 ( τ ) − y i ( τ ) ] 2 . \sigma_{y}(\tau)=\sqrt{\frac{1}{2m}\Sigma^{m}_{i=1}[y_{i+1}(\tau)-y_{i}(\tau)]^{2}}. σy(τ)=2m1Σi=1m[yi+1(τ)yi(τ)]2 .
σ y ( τ ) \sigma_{y}(\tau) σy(τ):用阿伦方差的正平方根值表示的频率稳定度
τ : 取样时间 \tau:取样时间 τ:取样时间
m : 取样个数减 1 m:取样个数减1 m:取样个数减1
y i ( τ ) : 第 i 个取样值 , 在取样时间 τ 内频率相对偏差的平均值 y_{i}(\tau):第i个取样值,在取样时间\tau内频率相对偏差的平均值 yi(τ):i个取样值,在取样时间τ内频率相对偏差的平均值

被测量落在 μ ± σ \mu \pm \sigma μ±σ区间内的概率

随机变量 X X X落在 [ a , b ] [a,b] [a,b]区间的概率为:
p ( a ≤ X ≤ b ) = ∫ a b p ( x ) d x = 1 σ 2 π ∫ a b e − ( x − μ ) 2 2 σ 2 d x = ϕ ( u 1 ) − ϕ ( u 2 ) p(a\leq X\leq b)=\int^{b}_{a}p(x)dx=\frac{1}{\sigma\sqrt{2\pi}}\int^{b}_{a}e\frac{-(x-\mu)^{2}}{2\sigma^{2}}dx=\phi(u_{1})-\phi(u_{2}) p(aXb)=abp(x)dx=σ2π 1abe2σ2(xμ)2dx=ϕ(u1)ϕ(u2).
式中: u = ( x − μ ) σ u=\frac{(x-\mu)}{\sigma} u=σ(xμ), Φ ( z ) = 1 2 π ∫ + ∞ z e − u 2 2 \Phi(z)=\frac{1}{\sqrt{2\pi}}\int^{z}_{+\infty}e^{-\frac{u^{2}}{2}} Φ(z)=2π 1+ze2u2.
公式解析:

  1. 概率密度函数:

    • p ( x ) p(x) p(x) 表示随机变量 X X X的概率密度函数。对于连续型随机变量,其概率密度函数描述了该随机变量取某一值的“可能性”。
    • 在这个公式中,给定的 p ( x ) p(x) p(x)形式是正态分布的概率密度函数,其中 μ \mu μ是均值, σ \sigma σ是标准差。
  2. 概率计算:

    • p ( a ≤ X ≤ b ) p(a \leq X \leq b) p(aXb) 表示随机变量 X X X落在区间 [ a , b ] [a,b] [a,b]的概率。
    • 这个概率可以通过对概率密度函数在 [ a , b ] [a,b] [a,b]区间上进行积分来计算,即 ∫ a b p ( x ) d x \int_{a}^{b}p(x)dx abp(x)dx
  3. 正态分布的概率密度函数:

    • p ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} p(x)=σ2π 1e2σ2(xμ)2 是正态分布的概率密度函数。
    • 其中, μ \mu μ 是分布的均值, σ \sigma σ 是分布的标准差。
    • 这个函数描述了正态分布的形状,它是一个钟形曲线,对称于均值 μ \mu μ,且标准差 σ \sigma σ决定了分布的宽度。
  4. 标准化变量:

    • u = ( x − μ ) σ u = \frac{(x - \mu)}{\sigma} u=σ(xμ) 是一个标准化变量,也称为 z z z-score。这个变换将原始的随机变量 X X X转换为标准正态分布。
    • 在标准正态分布中,均值为0,标准差为1。
  5. 累积分布函数:

    • Φ ( z ) = 1 2 π ∫ + ∞ z e − u 2 2 d u \Phi(z) = \frac{1}{\sqrt{2\pi}}\int_{+\infty}^{z}e^{-\frac{u^{2}}{2}}du Φ(z)=2π 1+ze2u2du 是标准正态分布的累积分布函数(CDF)。
    • 它给出了随机变量小于或等于某个值 z z z的概率。
    • 在这个公式中, ϕ ( u 1 ) − ϕ ( u 2 ) \phi(u_1) - \phi(u_2) ϕ(u1)ϕ(u2) 实际上计算了标准正态分布在 u 2 u_2 u2 u 1 u_1 u1之间的累积概率,其中 u 1 = ( b − μ ) σ u_1 = \frac{(b - \mu)}{\sigma} u1=σ(bμ) u 2 = ( a − μ ) σ u_2 = \frac{(a - \mu)}{\sigma} u2=σ(aμ)

常用分布

常用的概率分布主要有正态分布、均匀分布、指数分布、泊松分布和二项分布等。这些分布各有其特点和应用场景。

  1. 正态分布:正态分布是最常见的连续概率分布。若随机变量 X X X服从一个数学期望为μ、方差为σ^2的正态分布,记为 N ( μ , σ 2 ) N(μ,σ^2) N(μσ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。正态分布的区间半宽与包含因子的关系可以通过查询正态分布表或使用统计软件来确定。一般来说,对于给定的包含因子(如1σ、2σ、3σ等),可以计算出对应的区间半宽,从而确定在该区间内包含的数据比例。
  2. 均匀分布:均匀分布是一种简单的连续概率分布,其概率密度函数在定义域内为常数。在均匀分布中,区间半宽与包含因子的关系比较直接。由于概率密度函数为常数,因此区间半宽的增加会直接导致包含的数据比例增加。
  3. 指数分布:指数分布是一种连续概率分布,常用于描述事件发生之间的时间间隔。在指数分布中,区间半宽与包含因子的关系需要通过具体的分布参数来计算。一般来说,随着区间半宽的增加,包含的数据比例也会增加,但增加的速度会逐渐减慢。
  4. 泊松分布:泊松分布是一种离散概率分布,用于描述在给定时间内随机事件发生次数的概率分布。在泊松分布中,区间半宽与包含因子的关系不直接涉及,因为泊松分布关注的是事件发生的次数,而不是具体的数值范围。
  5. 二项分布:二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。在二项分布中,区间半宽与包含因子的关系也不直接相关,因为二项分布关注的是成功次数的概率分布。

不同的概率分布具有不同的特点和应用场景。对于正态分布和均匀分布等连续概率分布,区间半宽与包含因子之间存在一定的关系;而对于泊松分布和二项分布等离散概率分布,这种关系则不那么直接。在实际应用中,需要根据具体的问题和数据类型选择合适的概率分布进行建模和分析。

标准不确定度的A类评定公式

s p = Σ j = 1 m Σ i = 1 n ( x i j − x j ˉ ) 2 m ( n − 1 ) s_{p}=\sqrt{\frac{\Sigma^{m}_{j=1}\Sigma^{n}_{i=1}(x_{ij}-\bar{x_{j}})^{2}}{m(n-1)}} sp=m(n1)Σj=1mΣi=1n(xijxjˉ)2
s p : 合并样品标准偏差 s_{p}:合并样品标准偏差 sp:合并样品标准偏差
m : m 个同类被测量,得到 m 组数据 m:m个同类被测量,得到m组数据 m:m个同类被测量,得到m组数据
n : 每组测量 n 次 n:每组测量n次 n:每组测量n
j : 第 j 组的平均值为 x j ˉ j:第j组的平均值为\bar{x_{j}} j:j组的平均值为xjˉ
每个被测件测得的最佳估计值 x j ˉ \bar{x_{j}} xjˉ的标准不确定度公式为:
u ( x j ˉ ) = s p n u(\bar{x_{j}})=\frac{s_{p}}{\sqrt{n}} u(xjˉ)=n sp
若对每个被测件的测量次数 n j n_{j} nj不同,即各组的自由度 v j v_{j} vj不等,各组的实验标准偏差为 s j s_{j} sj,则合并样品标准偏差为: s p = Σ j = 1 m v j s j 2 Σ j = 1 m v j s_{p}=\sqrt{\frac{\Sigma^{m}_{j=1}v_{j}s_{j}^{2}}{\Sigma^{m}_{j=1}v_{j}}} sp=Σj=1mvjΣj=1mvjsj2

  • 21
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
计量经济学是研究经济现象的数量关系的一门学科。它运用数学和统计学的方法来分析和解释经济现象,并通过建立经济模型来预测和评估经济政策的效果。以下是一些计量经济学的重要知识点: 1. 回归分析:回归分析是计量经济学中最常用的方法之一,用于研究两个或多个变量之间的关系。它可以通过建立回归方程来量化变量之间的关系,并进行模型估计和推断。 2. 假设检验:假设检验是计量经济学中的一项重要工具,用于判断经济模型的有效性和参数的显著性。它可以帮助我们确定经济关系是否真实存在,以及变量之间的影响是否具有统计显著性。 3. 面板数据分析:面板数据是同时包含多个个体和多个时间观测的数据,例如跨国公司的财务数据或家庭的消费数据。面板数据分析可以通过考虑个体和时间的固定效应来控制个体和时间的异质性,从而提供更准确的估计结果。 4. 差分法:差分法是计量经济学中用于解决内生性问题的一种方法。通过对同一实体的不同时期数据进行比较,差分法可以消除个体固定效应和时间固定效应的影响,从而更准确地估计变量之间的关系。 5. 动态面板数据模型:动态面板数据模型是对面板数据进行建模的一种方法。它可以捕捉到个体和时间的动态变化,并分析变量之间的短期和长期关系。 6. 处理方法:处理方法是计量经济学中处理内生性问题的一种方法。它通过利用可观测的外生变量来估计内生变量的影响,从而解决内生性引起的估计偏误问题。 7. 时间序列分析:时间序列分析是研究时间序列数据的变化规律和趋势的方法。它可以帮助我们预测未来的经济变化,并评估经济政策的效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值