场景化应用实战系列四:基于 YOLO V5 的漫画人物检测

目录

一、目标设定

二、关键知识点梳理

三、案例讲解与实战操作

1. 数据准备与预处理

2. YOLO V5 模型训练

3. YOLO V5 模型推理

4. 模型评估


一、目标设定

利用 YOLO V5 实现漫画人物检测,能够快速准确地定位漫画图像中的人物位置,为漫画分析、人物识别等应用提供技术支持。

二、关键知识点梳理

  1. YOLO V5 模型特点

    • 简洁高效的网络结构,易于训练和部署。

    • 支持多尺度目标检测,能适应漫画中不同大小的人物。

  2. 数据准备与预处理

    • 收集和标注漫画人物数据集。

    • 将图像和标注转换为 YOLO V5 所需的格式。

  3. 模型训练与优化

    • 使用 YOLO V5 的配置文件进行模型训练。

    • 调整超参数以优化检测性能。

  4. 模型评估与推理

    • 在测试集上评估模型的检测精度和速度。

    • 对漫画图像进行实时人物检测。

三、案例讲解与实战操作

1. 数据准备与预处理

import os
import shutil

# 创建数据集目录结构
os.makedirs('dataset/images/train', exist_ok=True)
os.makedirs('dataset/images/val', exist_ok=True)
os.makedirs('dataset/labels/train', exist_ok=True)
os.makedirs('dataset/labels/val', exist_ok=True)

# 将图像和标注文件分为训练集和验证集
def split_dataset(images_dir, labels_dir, train_ratio=0.8):
    image_files = os.listdir(images_dir)
    random.shuffle(image_files)
    split_index = int(len(image_files) * train_ratio)

    for i, img_file in enumerate(image_files):
        base_name = os.path.splitext(img_file)[0]
        img_src = os.path.join(images_dir, img_file)
        label_src = os.path.join(labels_dir, f"{base_name}.txt")

        if i < split_index:
            shutil.copy(img_src, os.path.join('dataset/images/train', img_file))
            shutil.copy(label_src, os.path.join('dataset/labels/train', f"{base_name}.txt"))
        else:
            shutil.copy(img_src, os.path.join('dataset/images/val', img_file))
            shutil.copy(label_src, os.path.join('dataset/labels/val', f"{base_name}.txt"))

# 示例:分割数据集
split_dataset('path_to_images', 'path_to_labels')

2. YOLO V5 模型训练

import torch

# 加载 YOLO V5 模型
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)

# 设置训练参数
model.train(
    data='dataset.yaml',  # 数据集配置文件
    epochs=50,           # 训练轮数
    imgsz=640,          # 输入图像大小
    batch_size=16        # 批量大小
)

3. YOLO V5 模型推理

# 加载训练好的模型
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')

# 推理图像
results = model('path_to_image.jpg')

# 显示结果
results.show()

4. 模型评估

# 在验证集上评估模型
metrics = model.val('dataset.yaml')
print(metrics)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值