第四章 二元关系

第四章、二元关系
    序偶
        两个元素按照一定的次序组成的二元组:<x,y>,其中 <a,b> = <c,d> 仅当 a=c 且 b=d。

笛卡尔积
    设集合 A 和 B,则其笛卡尔积可以表示为:A x B = {<x,y> | x∈A ∧ y∈B}。
        例如,当 A={1,2} 且 B={a,b} 时,有 A x B = {<1,a>, <1,b>, <2,a>, <2,b>},而 B x A = {<a,1>, <a,2>, <b,1>, <b,2>},因为笛卡尔积不满足交换律。

    笛卡尔积不满足结合律,且当 A 或 B 为空集时,有 A x B = ∅。
    当 A 和 B 是有限集时,有 |A x B| = |B x A| = |A| × |B|。

关系
    设集合 A 和 B,则 A 和 B 的笛卡尔积 A x B 上的一个子集 R 被称为关系。元素 <x,y> 属于关系 R,即 xRy,表示 R 在 x 和 y 之间有一种关系,而 <x,y> 不属于 R,即 x 和 y 之间没有关系 R。

关系图的表示
    若 <aᵢ,bⱼ> 属于关系 R,则可以用箭头 aᵢ → bⱼ 表示 aᵢ 和 bⱼ 之间的关系。若 <aᵢ,aᵢ> 属于关系 R,则可以用一个带箭头的圆圈表示自环。

布尔矩阵的运算
    设矩阵 A 和矩阵 B,则有:
        并运算:对应位置中有一个为1则为1,否则为0;
        交运算:对应位置都为1才为1;
        布尔积矩阵:设 A 是 m×p 的矩阵,B 是 p×n 的矩阵,则 A 和 B 的布尔积矩阵 C 是一个 m×n 的矩阵,满足 cᵢⱼ=1 当且仅当存在 1 ≤ k ≤ p 使得 aᵢₖ=1 且 bₖⱼ=1。


关系的运算
    设关系 R 和关系 S,则有:
        关系的交运算:R∩S = {<x,y> | <x,y>∈R ∧ <x,y>∈S};
        关系的并运算:R∪S = {<x,y> | <x,y>∈R ∨ <x,y>∈S};
        关系的差运算:R-S = {<x,y> | <x,y>∈R ∧ <x,y>∉S};
        关系的补运算:R' = {<x,y> | <x,y>∉R};
        关系的复合运算:设 R:A→B,S:B→C,则 R 和 S 的复合运算 R∘S 是一个以 A 为前域,以 C 为后域的关系,满足 <x,z>∈R∘S 当且仅当存在 y∈B 满足 <x,y>∈R 和 <y,z>∈S。
        关系的逆运算:设关系 R,则 R 的逆运算 R⁻¹ = {<y,x> | <x,y>∈R}。


关系的运算定律
    结合律:(R∘S)∘T=R∘(S∘T)
    同一律:IA∘R=R∘IB=R  (IA,IB为R上的恒等关系)
    分配律:
        R∘(S1交/并S2)=(R∘S1)交/并(R∘S2)
        (S1交/并S2)∘R=(S1∘R)交/并(S2∘R)

    逆运算的性质:
        分配性:(R∘S)⁻¹=S⁻¹∘R⁻¹  交并补也是
        可换性:(R⁻¹)'=(R')⁻¹

    幂运算:
        R^0=IA
        R^1=R
        R^(n+1)=R^n∘R=R∘R^n
        R^(m+n)=R^m∘R^n
        (R^(n))^n=R^mn
        连续求R的幂时,当n不断增加时,R^n的基数成收敛的趋势  

    关系的性质:
        自反性与反自反性:
            自反:对于任意的元素a∈A,都有<a,a>∈R
                 {<1,1>, <2,2>, <3,3>, <4,4>}

            反自反:对于任意的元素a∈A,都有<a,a>∉R
                 {<1,2>, <1,3>, <1,4>, <2,3>, <2,4>, <3,4>}

            上面二者都不满足的时候是既不自反又不反自反的
            关系图中的特点是自反每个点都有自环,反自反每个点都没有自环
            关系矩阵中的特点是自反主对角线都是1,反自反是主对角线都不是1

        对称性与反对称性:
            对称性:对于任意元素a和b,当<a, b>存在于R时,<b, a>也必须存在于R中
                {<1,2>, <2,1>, <3,4>, <4,3>}

            反对称性:对于任意元素a和b,当<a, b>存在于R时,<b, a>不能存在于R中
                 {<1,2>, <2,3>, <3,4>}

            关系图中的特点是对称的节点间有双向边,只有自环时是即对称又反对称的
            关系矩阵中的特点是对称的关于主对角线对称的两个点同时为1或0,反对称的

        传递性与非传递性:
            传递性:如果<a,b>和<b,c>均属于该关系,则<a,c>也属于该关系 
                 {<1,2>, <2,3>, <1,3>}

            非传递性:如果<a,b>和<b,c>均属于该关系,但<a,c>不属于该关系
                {<1,2>, <4,4>, <1,4>, <3,4>}

            关系图的特点是像向量的加法规则
            关系矩阵的特点是rij=1,rjk=1,必有rik=1

        关系的闭包:就是添加最少的元素让关系集合满足自反r(R),对称s(R),传递t(R)的关系
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值