珠心算乘法,是指在不使用算盘的情况下,采用珠算乘法的计算方式,通过心算计算两数相乘结果的方法。
上述定义包含两方面意思:一是采用珠算乘法的计算方式计算两个数相乘的方法。二是在计算过程中,不能使用算盘等任何辅助工具,要完全通过心算进行。心算者手中的笔只用于写最终计算结果,不能用于记录中间的计算过程。
按照出题方式划分,珠心算乘法可分为三种类型:
(1) 珠心算乘法之看心算。就是要求学生看着乘法算式进行心算。这个算式一般是印刷在书本上或者显示在屏幕上。
(2) 珠心算乘法之快闪式看心算。算题在屏幕上显示的时间只有 2 秒钟,要求学生利用这个暂短的时间记住乘法算式,然后凭着对算式的记忆进行乘法珠心算。
(3) 珠心算乘法之听心算。算题由多媒体平台播报,或者由教师说出,要求学生听一遍试题后就记住乘法算式,然后凭着对算式的记忆进行乘法珠心算。
常用术语
为了后面叙述方便,下面列出一些常用术语,并定义一些表述方法。
(一) 被乘数:用 B (m) 表示 m 位数的被乘数。如 B (5) 是个 5 位数被乘数,并且分别用 B₁、B₂、B₃、B₄、B₅表示 B (m) 的个位。
(二) 乘数:用 C (n) 表示 n 位数的乘数。如 C (5) 是个 5 位数乘数,并且分别用 C₁、C₂、C₃、C₄、C₅表示 C (n) 的个位、十位、百位、千位、万位的数字,记为 C (5)=C₅C₄C₃C₂C₁。
(三) 落笔 n 位数字 (write),记为 w (n)。对于珠心算乘法之看心算,要设计一个适用于心算的乘法算法,必须在运算过程中,逐步将已经是最终结果的数字写到纸上,写到纸上的数字,大脑中就不再观想此数字了,这样就为后续的继续运算减轻了观想的负担。
例如,运算到某一步,得到的中间结果是个 4 位数字 “3456”,此刻,这个 4 位数全都在大脑中的观想算盘上,如果此刻已经知道,最后 1 位的 “6” 就是最终结果的最后 1 位了,则为了减少观想的数字,需要做以下两步操作:
① 将 “6” 写到纸上。
② 将观想中的数字的末位数 “6” 去掉,只观想数字 “345”。在后续的运算中,就是在 “345” 的基础上进行操作了,并且后续操作的个位档就是 “345” 的个位档。
这两步操作记为 +w (1),表达式写为:[3456] + w (1) = [345] 6。其中 [] 内的数字,表示的是在观想算盘上的数字,[] 后面的数字 6,表示的是写到纸上的数字。
(四) 逐层向外将数据求积,然后再把乘积相加:记为◎,简称为【对称运算】。【对称运算】符表示的意思就是:
B₅B₄B₃B₂B₁◎C₅C₄C₃C₂C₁ = B₁×C₅ + B₂×C₄ + B₃×C₃ + B₄×C₂ + B₅×C₁
B₄B₃B₂B₁◎C₄C₃C₂C₁ = B₁×C₄ + B₂×C₃ + B₃×C₂ + B₄×C₁
B₃B₂B₁◎C₃C₂C₁ = B₁×C₃ + B₂×C₂ + B₃×C₁
B₂B₁◎C₂C₁ = B₁×C₂ + B₂×C₁
B₁◎C₁ = B₁×C₁,这就是 2 个数的乘积。
这种 “逐层向外将数据求积,然后再把乘积相加” 的【对称运算】,就把较复杂的、通过下标配对的逻辑关系转成了一看就清楚的 “象形法” 了。
珠心算乘法之看心算
珠算乘法的历史悠久,形成的方法也很多。但是,由于珠心算乘法只是形式上利用珠算乘法的算法,实际上并不使用算盘,所以,以前人们普遍应用的珠算乘法的算法,比如 “前乘法” 等,都不能照搬过来使用。而且,对于 3 位数及其以上的珠心算乘法,目前还没有一个通用算法。
下面给出一个通用的珠心算乘法的计算方法,称为【逐位清乘法】。算法思路是:对应于乘积,从个位起,一直到最高位,在落笔该位所对应的数字之前,一次性加完与该位对齐的所有乘积对,加完之后就落笔 1 位,故起名为逐位清。
我们将这种由后乘法的 “尾乘法” 演变而来的算法称为【逐位清乘法】。
【逐位清乘法】珠心算步骤的数学描述语言
下面以 B (5)×C (4) 为例,给出【逐位清乘法】的数学描述语言。假设:
B(5)= B₅B₄B₃B₂B₁
C(4)= C₄C₃C₂C₁。
计算 B (5)×C (4) 的 “形式列式” 如下图所示。
这里之所以称为 “形式列式”,而不是 “实际列式”,是因为 “实际列式” 需要算出 Bᵢ×Cⱼ的实际值,并且,如果这个乘积大于 9,还需要向上进位,Bᵢ×Cⱼ所对应的位置只剩下去掉进位之后的余数。所以,对于 “实际列式”,列式中间的 4 行就是 4 个依次向左移动 1 位的 4 个数字。但是,在上图中,Bᵢ×Cⱼ并不是一个值,而是一个乘法算式,这个乘法算式的值,要等到对应的每一列数值相加时,先分别计算出每一个 Bᵢ×Cⱼ后再直接相加。
珠心算乘法的最终计算结果,就是执行 (1) 至 (8) 这 8 步得到的结果。步骤从右开始,依次向左:
(1) 计算 B₁×C₁。将结果的最后 1 位写到纸上,并将进位的数字记到观想算盘上,用于下一步计算中,与前 1 位的计算数字叠加。实际上就是执行 B₁◎C₁+w (1)。
(2) 计算第 2 列。将观想算盘上的数字 + B₁×C₂+B₂×C₁的最后 1 位写到纸上,并将进位的数字记到观想算盘上,用于下一步计算中,与前 1 位的计算数字叠加。实际上就是执行 + B₂B₁◎C₂C₁+w (1)。
(3) 计算第 3 列。执行 + B₃B₂B₁◎C₃C₂C₁+w (1)。
(4) 计算第 4 列。执行 + B₄B₃B₂B₁◎C₄C₃C₂C₁+w (1)。
(5) 计算第 5 列。执行 + B₅B₄B₃B₂◎C₄C₃C₂+w (1)。
(6) 计算第 6 列。执行 + B₅B₄B₃◎C₄C₃C₂+w (1)。
(7) 计算第 7 列。执行 + B₅B₄◎C₄C₃+w (1)。
(8) 计算第 8 列。执行 + B₅◎C₄+w (2)。
为了便于语言描述,在上图中,把计算结果时的 8 步运算分成 3 段:
(一) 定尾增位段。在这部分中,每个◎左边的数字都是最后 1 位数固定都是 B₁,每个◎右边的数字,最后 1 位数固定都是 C₁,“乘积对” 个数是从 1 个开始,逐次加 1,直到乘积对到达 n-1 个为止,共进行 n-1 列运算。
(二) 左移等位段。在这部分中,每个◎两边的数字固定都是 n 位,并且向左边的数字固定是 C (n),左边的数字从 Bn…B1 开始,逐次向左移动 1 位,直到移动到 Bm…B (m-n+1) 为止。共进行 m-n+1 步运算。
(三) 定首减位段。在这部分中,每个◎左边的数字,首位数固定都是 Bm;每个◎右边的数字,首位数固定都是 Cn,“乘积对” 个数是从 n-1 个开始,逐次减 1,直到乘积对只有 1 个为止,共进行 n-1 列运算。
综上所述,给出 B (m)×C (n)【逐位清乘法】心算步骤的数学描述语言,由 4 阶段组成:
(1) 如果 n>1,k 从 1 开始,逐次加 1,直到 k=n-1 结束,心算:+Bk…B₁◎Ck…C₁+w (1);
(2) k 从 0 开始,逐次加 1,直到 k=m-n 结束,心算:+B (k+n)…B (k+1)◎Cn…C₁+w (1);
(3) 如果 n>1,k 从 n-2 开始,逐次减 1,直到 k=0 结束,心算:+Bm…B (m-k)◎Cn…C (n-k)+w (1);
(4) +w(2)。
上述的描述语言,是采用编程语言中的循环体结构形式表述的,对于没接触过编程语言的小学生,理解上述的描述语言是比较困难的,因此,上述语言描述,只是给出了算理描述,对于学习珠心算乘法的小学生,没有必要生记硬背用语描述的心算步骤。下面给出 4 位数乘法(3 位数乘法、2 位数乘法、1 位数乘法略)的实际运算步骤和计算实例,学生们练习乘法珠心算,只需参照实例进行心算即可。
说明 1:当 k=1 时,Bk…B₁仅表示 1 位数 B₁。
说明 2:当 n=1 时,上述 4 个阶段的①和③不执行。
说明 3:多位数乘法 B (m)×C (n) 的假设前提是 m≥n。
说明 4:【逐位清乘法】是适合任意位数乘法的通用算法。
下面以 B (5)×C (4) 为例,写出【逐位清乘法】的分步计算过程如下:
B₅B₄B₃B₂B₁×C₄C₃C₂C₁=
(一) 定尾增位段。
(1) B₁◎C₁+w(1)
(2) +B₂B₁◎C₂C₁+w(1)
(3) +B₃B₂B₁◎C₃C₂C₁+w(1)
(二) 左移等位段。
(4) +B₄B₃B₂B₁◎C₄C₃C₂C₁+w(1)
(5) +B₅B₄B₃B₂◎C₄C₃C₂+w(1)
(三) 定首减位段。
(6) +B₅B₄B₃◎C₄C₃C₂+w(1)
(7) +B₅B₄◎C₄C₃+w(1)
(8) +B₅◎C₄+w(2)
实例:求 12345×6789 的结果。心算步骤如下:
(一) 定尾增位段。
(1) 5◎9+w(1) = [4]5
(2) +45◎89+w(1) = [8]1025
(3) +345◎789+w(1) = [10]12025
(二) 左移等位段。
(4) +2345◎6789+w(1) = [11]102025
(5) +12345◎6789+w(1) = [8]1102025
(三) 定首减位段。
(6) +123◎678+w(1) = [4]81102025
(7) +12◎67+w(1) = [3]81102025
(8) +1◎6+w(2) = 83102025
说明 1:在 (1) 中,[4] 5 表示后面 1 位 “5” 已经写到纸上,在观想算盘上,原来成为观想算盘上的个位档的十位档,已经成为观想算盘上的个位档,参与后续运算。
说明 2:上述每一步中所列的 “对称运算” 算式,只是为了形象说明运算步骤,在实际心算时,如果是看着题进行心算,就不是珠心算了。因为 “看心算” 就是看着算题进行心算,所以 “对称运算” 必须是看着算题进行心算。
例如,原题是 12345×6789,在第 (5) 步解题时,需要计算 B₅B₄B₃B₂◎C₄C₃C₂,则 12345×6789 就看成了 1234◎6789,然后直接在观想算盘上计算下列算式即可:+24+16+9+w (1)。
详细资料,请参阅《高效珠心算》一书。