基于改进型灰狼算法的RFID网络规划

   灰狼算法(Grey Wolf Optimizer, GWO)最早由Mirijili 等2014年提出,其思想主要来源于灰狼的捕猎行为和社会等级。但中后期存在收敛速度慢和容易陷入局部最优的问题。对此,提出一种基于惯性常数策略的搜索机制,并引入高斯算子来提高种群的多样性。下面介绍这种求解RFID网络规划问题的改进型灰狼算法,实现了在RFID网络规划问题上的应用。

RFID 网络规划问题的数学表述

  RFID网络规划的任务是在部署多个RFID系统的同时,兼顾4个目标:覆盖率、负载均衡、信号干扰、发射功率。其目的是在保证百分百覆盖率的情况下,部署尽量少的阅读器,以避免阅读器之间相互干扰,使每个阅读器读取标签的数量比较接近,且使用的功率最少。
1) 覆盖率。RFID网络覆盖率的性能指标,表示为
f c = ( ∑ i = 1 n C i ) / n f_c=(\sum_{i=1}^n C_i)/n fc=(i=1nCi)/n
其中 C i C_i Ci 表示第 i i i个标签是否被覆盖。当没有一个阅读器读取 i i i标签的信息时, C i = 0 C_i=0 Ci=0,否则 C i = 1 C_i=1 Ci=1
2) 负载均衡。 RFID的负载均衡,其表达式为
f L = ∏ k = 1 m 1 / ( C k + 1 ) f_L = \prod_{k=1}^m1/(C_k + 1) fL=k=1m1/(Ck+1)
其中 C k C_k Ck表示第 k k k个阅读器读取标签的数目,应尽量使每个阅读器读取的标签数量接近。
3) 阅读器碰撞干扰之和。
当阅读器 i i i j j j 相离时,即, ( r i + r j ) < d i s t ( R i , R j ) (r_i + r_j)<dist(R_i,R_j) (ri+rj)<dist(Ri,Rj)时, I i j = 0 I_{ij}=0 Iij=0
当阅读器i与阅读器j 相交时,即, m a x ( r i , r j ) < D i s k ( R i , R j ) < ( r i + r j ) max(r_i,r_j)<Disk(R_i,R_j )<(r_i+r_j ) max(ri,rj)<Disk(Ri,Rj)<(ri+rj) 时。 I i j = ( ( r i + r j ) − D i s k ( R i , R j ) ) / 2 I_{ij}=((r_i+r_j )-Disk(R_i,R_j ))/2 Iij=((ri+rj)Disk(Ri,Rj))/2
当阅读器i与阅读器j 部分包含(小圆圆心在大圆内部,但大圆没有全部包含小圆)时,即 ∣ r i − r j ∣ < D i s k ( R i , R j ) < m a x ⁡ ( r i , r j ) |r_i-r_j |<Disk(R_i,R_j )<max⁡(r_i,r_j) rirj<Disk(Ri,Rj)<max(ri,rj) I i j = ( ( r i + r j ) − D i s k ( R i , R j ) ) I_{ij}=((r_i+r_j )-Disk(R_i,R_j )) Iij=((ri+rj)Disk(Ri,Rj))
当阅读器i与阅读器j 全包含时,即 D i s k ( R i , R j ) < ∣ r i − r j ∣ Disk(R_i,R_j )<|r_i-r_j | Disk(Ri,Rj)<rirj I i j = 2 ∗ m i n ⁡ ( r i , r j ) I_{ij}=2*min⁡(r_i,r_j) Iij=2min(ri,rj)
f I = ∑ i = 1 m − 1 ∑ j = i + 1 m I i j f_I = \sum_{i=1}^{m-1}\sum_{j=i+1}^mI_{ij} fI=i=1m1j=i+1mIij
其中, r i r_i ri为阅读器 i i i 的干扰范围, r j r_j rj为阅读器 j j j 的干扰范围;
d i s k ( R i , R j ) disk(R_i,R_j ) disk(Ri,Rj)阅读器 i i i和阅读器 j j j 的距离。

4) 发射功率。表达式为
f T = ∑ i = 1 m P i f_T = \sum_{i=1}^mP_i fT=i=1mPi
其中, P r P_r Pr表示第 r r r个阅读器的传输功率。
  为了达到优化部署的目的,RFID的整体最优解由上述4个目标函数的线性组合来表示。
F C = − f C + 1 ∈ [ 0 , 1 ] F_C= -f_C+1∈[0,1] FC=fC+1[0,1]
F L = f L ∈ [ 0 , 1 ] F_L= f_L∈[0,1] FL=fL[0,1]
F I = f I / ( m 2 r ) ∈ [ 0 , 1 ] F_I= f_I/(m^2 r)∈[0,1] FI=fI/(m2r)[0,1]
F T = f T / m P = 1 F_T=f_T/mP=1 FT=fT/mP=1
m i n   F = w 1 F C + w 2 F L + w 3 F I + w 4 min\ F= w_1 F_C+ w_2 F_L+ w_3 F_I+w_4 min F=w1FC+w2FL+w3FI+w4

改进型灰狼算法的算法描述

  改进型灰狼捕获猎物的行为可以分为搜索猎物、包围猎物和攻击猎物3个阶段。
1)惯性常数策略
  将灰狼个体分布到整个搜索区域中,采取的是随机分布的方式;捕食行为时,采取的是惯性搜索策略搜索猎物。相关数学表达式如下:
D = ∣ C ⋅ X p ( t ) − m e a n ⋅ X ( t ) ∣ D=|C\cdot X_p(t)-mean\cdot X(t)| D=CXp(t)meanX(t)
X ( t + 1 ) = X p ( t ) − A ⋅ D X(t+1) = X_p(t) -A\cdot D X(t+1)=Xp(t)AD
其中 t + 1 t+1 t+1表示下一次迭代; X X X代表狼的位置; X p X_p Xp代表猎物的位置;A和D是系数向量,采用以下方程进行建模:
A = 2 ⋅ L ⋅ r 1 A = 2\cdot L \cdot r_1 A=2Lr1
C = 2 ⋅ λ ⋅ r 2 C=2\cdot\lambda\cdot r_2 C=2λr2
λ = ( ( λ m a x − 1 ) × ( λ m a x − λ m i n ) m a x i t e r ) \lambda=(\frac{(\lambda_{max}-1)\times(\lambda_{max}-\lambda_{min})}{max_{iter}}) λ=(maxiter(λmax1)×(λmaxλmin))
其中, r 1 r_1 r1 r 2 r_2 r2是[0,1]中的随机数。 λ m a x \lambda_{max} λmax λ m i n \lambda_{min} λmin分表表示控制距离参数的最大值和最小值。惯性常数 λ \lambda λ服从线性递减规律,影响灰狼群体的开发和探索能力。
  当灰狼知道猎物的位置时, α \alpha α狼、 β \beta β狼和 δ \delta δ狼带领群狼包围猎物。因此根据最好解、次优解和次次优解组成的关键指挥组,存储最好的3种解决方案,引导更新每一个狼在小组中的位置。位置更新方程如下:
D α = ∣ C 1 ⋅ X α − X ( t ) ∣ D_{\alpha}=|C_1\cdot X_{\alpha}-X(t)| Dα=C1XαX(t)
D β = ∣ C 2 ⋅ X β − X ( t ) ∣ D_{\beta}=|C_2\cdot X_{\beta}-X(t)| Dβ=C2XβX(t)
D δ = ∣ C 3 ⋅ X δ − X ( t ) ∣ D_{\delta}=|C_3\cdot X_{\delta}-X(t)| Dδ=C3XδX(t)
X 1 = X α − A 1 ⋅ D α X_1 = X_{\alpha} - A_1 \cdot D_{\alpha} X1=XαA1Dα
X 2 = X β − A 2 ⋅ D β X_2 = X_{\beta} - A_2 \cdot D_{\beta} X2=XβA2Dβ
X 3 = X δ − A 3 ⋅ D δ X_3 = X_{\delta} - A_3 \cdot D_{\delta} X3=XδA3Dδ
2) 高斯算子变异
  灰狼通常在猎物停止移动时对其进行进攻。在迭代更新过程中,当一部分灰狼在局部最优极值点出现较严重的聚集时,对其他等级的灰狼的状态进行高斯变异,避免陷入局部最优解。高斯变异是在原有个体的状态基础上加上服从高斯分布的随机向量,其定义如下:
X ( t ) = X ( t ) × [ 1 + k × N ( 0 , 1 ) ] X(t)=X(t)\times[1+k\times N(0,1)] X(t)=X(t)×[1+k×N(0,1)]
其中, X ( t ) X(t) X(t)是第 i i i只狼在 t t t次迭代时的位置, k k k是从1到0之间递减的变量, N ( 0 , 1 ) N(0,1) N(0,1)是服从均值为0,方差为1的高斯分布的变量。

RFID 网络规划

  实质上,RFID网络规划问题就是一个多目标的组合优化问题。其中,阅读器的规划问题成了大规模应用必须考虑的首要问题;充分有效地利用每一个阅读器的覆盖能力,合理地规划每个阅读器的位置,适当调整阅读器的参数,不仅能够有效地获取所需要的信息,还能够减少阅读器之间的干扰,产生较高的经济效益,并且提高整体性能。IGWO算法的流程如下图所示。
IGWO算法流程图

MATLAB 仿真与结果

具体MATLAB实现 参见 IGWO
GWO算法与IGWO算法在标签位置相同时,得到的阅读器位置及覆盖信息如下图所示;
标签位置及覆盖范围信息
各指标随迭代次数的变化
IGWO各指标随迭代次数的变化
IGWO各指标随迭代次数的变化
GWO各指标随迭代次数的变化
GWO各指标随迭代次数的变化

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是基于改进优化算法的路径规划的Python代码示例: ```python import numpy as np # 定义问题 start = [0, 0] # 起点坐标 end = [100, 100] # 终点坐标 obstacles = [[30, 50], [60, 80], [20, 70]] # 障碍物坐标列表 class Wolf: def __init__(self, position): self.position = position self.fitness = self.calculate_fitness() def calculate_fitness(self): # 计算适应度函数 distance = np.sqrt((self.position[0] - end[0])**2 + (self.position[1] - end[1])**2) return distance def initialize_population(population_size): # 初始化种群 population = [] for _ in range(population_size): x = np.random.uniform(start[0], end[0]) y = np.random.uniform(start[1], end[1]) wolf = Wolf([x, y]) population.append(wolf) return population def update_position(wolf, alpha, beta, delta): # 更新位置 x1 = wolf.position x2 = alpha.position x3 = beta.position x4 = delta.position a1 = 2 * np.random.rand(2) - 1 a2 = 2 * np.random.rand(2) - 1 a3 = 2 * np.random.rand(2) - 1 a4 = 2 * np.random.rand(2) - 1 new_position = (x1 + a1 * (x2 - x3) + a2 * (x4 - x3)) / 2 + a3 * (x4 - x1) # 检查新位置是否在合法范围内 new_position[0] = max(min(new_position[0], end[0]), start[0]) new_position[1] = max(min(new_position[1], end[1]), start[1]) # 检查新位置是否与障碍物发生碰撞 for obstacle in obstacles: if np.sqrt((new_position[0] - obstacle[0])**2 + (new_position[1] - obstacle[1])**2) < 5: new_position = wolf.position break return new_position def improve_wolves(population): # 改进位置 sorted_population = sorted(population, key=lambda x: x.fitness) alpha = sorted_population[0] beta = sorted_population[1] delta = sorted_population[2] for i in range(len(population)): population[i].position = update_position(population[i], alpha, beta, delta) population[i].fitness = population[i].calculate_fitness() return population def optimize_path(population_size, num_iterations): # 优化路径 population = initialize_population(population_size) for _ in range(num_iterations): population = improve_wolves(population) sorted_population = sorted(population, key=lambda x: x.fitness) best_path = sorted_population[0].position return best_path # 示例用法 best_path = optimize_path(population_size=50, num_iterations=100) print("Best path:", best_path) ``` 这是一个简单的基于改进优化算法的路径规划代码示例。代码中定义了问题(起点、终点和障碍物),并实现了的初始化、位置更新和改进等功能。最后,通过调用`optimize_path`函数来优化路径,并返回最佳路径。 请注意,这只是一个简单的示例代码,您可能需要根据您的具体问题进行适当的修改和调整。希望对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_74043383

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值