基于维度学习的狩猎搜索策略的改进灰狼优化算法

一、理论基础

1、灰狼优化算法

请参考这里

2、改进的灰狼优化算法

基于维度学习的狩猎搜索策略的改进灰狼优化算法(IGWO)主要包括三个阶段:初始化阶段、运动阶段、选择和更新阶段。

(1)初始化阶段

在该阶段, N N N只灰狼个体按照式(1)在给定范围 [ l j , u j ] [l_j,u_j] [lj,uj]内随机分布在搜索空间中。 X i j = l j + r a n d j [ 0 , 1 ] × ( u j − l j ) ,   i ∈ [ 1 , N ] ,   j ∈ [ 1 , D ] (1) X_{ij}=l_j+rand_j[0,1]\times(u_j-l_j),\,i\in[1,N],\,j\in[1,D]\tag{1} Xij=lj+randj[0,1]×(ujlj),i[1,N],j[1,D](1) i i i次灰狼在第 t t t次迭代中的位置表示为 X i ( t ) = { x i 1 , x i 2 , ⋯   , x i D } X_i(t)=\{x_{i1},x_{i2},\cdots,x_{iD}\} Xi(t)={xi1,xi2,,xiD}的向量,其中 D D D是问题的维数。整个狼群存储在一个矩阵 P o p Pop Pop中,该矩阵有 N N N行和 D D D列。 X i ( t ) X_i(t) Xi(t)的适应度值由适应度函数 f ( X i ( t ) ) f(X_i(t)) f(Xi(t))计算。

(2)运动阶段

除了群体狩猎,个体狩猎是灰狼另一种有趣的社会行为,这是我们改进GWO的动机。IGWO包含一个额外的名为基于维度学习的狩猎(Dimension learning-based hunting, DLH)搜索的运动策略。在DLH中,每一只狼的邻居都知道它是 X i ( t ) X_i(t) Xi(t)新位置的另一个候选者。以下步骤描述了规范的GWO和DLH搜索策略如何生成两个不同的候选者。
规范的GWO搜索策略:在GWO中,来自 P o p Pop Pop的前三个最佳狼被认为是 α \alpha α β \beta β δ \delta δ。之后,线性下降系数 a a a以及系数 A A A C C C通过相应公式计算。然后,考虑 X α X_\alpha Xα X β X_\beta Xβ X δ X_\delta Xδ的位置,通过相应公式确定猎物的包围。 最后,灰狼 X i ( t ) X_i(t) Xi(t)新位置的第一个候选者 X i − G W O ( t + 1 ) X_{i-GWO}(t+1) XiGWO(t+1)由对应公式计算。
基于维度学习的狩猎(DLH)搜索策略:在原始GWO中,在 P o p Pop Pop的三只领头狼的帮助下,为每只狼生成一个新位置。这种方式导致GWO收敛缓慢,种群过早失去多样性,狼陷入局部最优。为了解决这些缺陷,在提出的DLH搜索策略中,狼的个体狩猎被认为是由其邻居学习的。
在DLH搜索策略中, X i ( t ) X_i(t) Xi(t)的新位置的每个维度由式(3)计算,其中该个体由其不同邻居和从 P o p Pop Pop中随机选择的个体学习。然后,除了 X i − G W O ( t + 1 ) X_{i-GWO}(t+1) XiGWO(t+1),DLH搜索策略还为 X i ( t ) X_i(t) Xi(t)的新位置生成另一个候选位置 X i − D L H ( t + 1 ) X_{i-DLH}(t+1) XiDLH(t+1)。为此,首先,通过式(1)使用 X i ( t ) X_i(t) Xi(t)的当前位置和候选位置 X i − G W O ( t + 1 ) X_{i-GWO}(t+1) XiGWO(t+1)之间的欧几里德距离来计算半径 R i ( t ) R_i(t) Ri(t) R i ( t ) = ∣ ∣ X i ( t ) − X i − G W O ( t + 1 ) ∣ ∣ (1) R_i(t)=||X_i(t)-X_{i-GWO}(t+1)||\tag{1} Ri(t)=Xi(t)XiGWO(t+1)(1)然后,由 N i ( t ) N_i(t) Ni(t)表示的 X i ( t ) X_i(t) Xi(t)的邻域由关于半径 R i ( t ) R_i(t) Ri(t)的式(2)构造,其中 D i D_i Di X i ( t ) X_i(t) Xi(t) X j ( t ) X_j(t) Xj(t)之间的欧氏距离。 N i ( t ) = { X j ( t ) ∣ D i ( X i ( t ) , X j ( t ) ) ≤ R i ( t ) ,   X j ( t ) ∈ P o p } (2) N_i(t)=\{X_j(t)|D_i(X_i(t),X_j(t))\leq R_i(t),\,X_j(t)\in Pop\}\tag{2} Ni(t)={Xj(t)Di(Xi(t),Xj(t))Ri(t),Xj(t)Pop}(2)一旦构造了 X i ( t ) X_i(t) Xi(t)的邻域,则通过式(3)执行多邻域学习,其中 X i − D L H , d ( t + 1 ) X_{i-DLH,d}(t+1) XiDLH,d(t+1) d d d维是通过使用从 N i ( t ) N_i(t) Ni(t)中选择的随机邻域 X n , d ( t ) X_{n,d}(t) Xn,d(t) d d d维和从 P o p Pop Pop中选择的随机 X r , d ( t ) X_{r,d}(t) Xr,d(t)来计算的。 X i − D L H , d ( t + 1 ) = X i , d ( t ) + r a n d × ( X n , d ( t ) − X r , d ( t ) ) (3) X_{i-DLH, d}(t+1)=X_{i,d}(t)+rand\times(X_{n,d}(t)-X_{r,d}(t))\tag{3} XiDLH,d(t+1)=Xi,d(t)+rand×(Xn,d(t)Xr,d(t))(3)

(3)选择和更新阶段

在该阶段,首先,通过式(4)比较两个候选位置 X i − G W O ( t + 1 ) X_{i-GWO}(t+1) XiGWO(t+1) X i − D L H ( t + 1 ) X_{i-DLH}(t+1) XiDLH(t+1)的适应度值来选择较优秀的候选位置。 X i ( t + 1 ) = { X i − G W O ( t + 1 ) , f ( X i − G W O ) < f ( X i − D L H ) X i − D L H ( t + 1 ) ,     o t h e r w i s e (4) X_i(t+1)=\begin{dcases}X_{i-GWO}(t+1),\quad f(X_{i-GWO})<f(X_{i-DLH})\\X_{i-DLH}(t+1),\quad\quad\quad\quad\,\,\, otherwise\end{dcases}\tag{4} Xi(t+1)={XiGWO(t+1),f(XiGWO)<f(XiDLH)XiDLH(t+1),otherwise(4)然后,为了更新 X i ( t + 1 ) X_i(t+1) Xi(t+1)的新位置,如果所选候选者的适应度值小于 X i ( t ) X_i(t) Xi(t),则由所选候选者更新 X i ( t ) X_i(t) Xi(t)。否则, X i ( t ) X_i(t) Xi(t) P O P POP POP中保持不变。
最后,对所有个体执行此过程后,迭代计数器( i t e r iter iter)增加1,搜索可以迭代,直到达到预定义的迭代次数( M a x i t e r Maxiter Maxiter)。所提出的IGWO算法的伪代码如图1所示。
在这里插入图片描述

图1 IGWO算法伪代码

二、实验仿真与分析

将IGWO与PSO、KH和GWO进行对比,以文献[2]中的F2、F6(单峰函数/30维)、F8、F10(多峰函数/30维)、F18、F19(固定维度多峰函数/2维、3维)为例,种群规模设置为30,最大迭代次数设置为500,每个算法独立运算30次。结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F2
IGWO:最差值: 3.4467e-17, 最优值: 4.7771e-19, 平均值: 7.2787e-18, 标准差: 6.4366e-18, 秩和检验: 1
PSO:最差值: 30.3002, 最优值: 12.797, 平均值: 22.3033, 标准差: 4.2795, 秩和检验: 3.0199e-11
KH:最差值: 7.3418, 最优值: 0.28857, 平均值: 1.1742, 标准差: 1.4852, 秩和检验: 3.0199e-11
GWO:最差值: 4.7137e-16, 最优值: 1.1533e-17, 平均值: 1.0373e-16, 标准差: 9.065e-17, 秩和检验: 6.6955e-11
函数:F6
IGWO:最差值: 0.25128, 最优值: 4.1737e-05, 平均值: 0.024273, 标准差: 0.073951, 秩和检验: 1
PSO:最差值: 1954.2573, 最优值: 341.8429, 平均值: 906.1257, 标准差: 389.1784, 秩和检验: 3.0199e-11
KH:最差值: 1.5499, 最优值: 0.4947, 平均值: 1.0705, 标准差: 0.22953, 秩和检验: 3.0199e-11
GWO:最差值: 1.7497, 最优值: 0.25093, 平均值: 0.8455, 标准差: 0.3743, 秩和检验: 3.3384e-11
函数:F8
IGWO:最差值: -5489.6983, 最优值: -10574.0223, 平均值: -8459.3872, 标准差: 1653.7623, 秩和检验: 1
PSO:最差值: -1921.6121, 最优值: -3833.6485, 平均值: -2754.4901, 标准差: 467.6339, 秩和检验: 3.0199e-11
KH:最差值: -5082.9109, 最优值: -10135.6575, 平均值: -7408.1923, 标准差: 1253.9246, 秩和检验: 0.010315
GWO:最差值: -3195.0866, 最优值: -7546.2803, 平均值: -5872.8204, 标准差: 881.663, 秩和检验: 6.5261e-07
函数:F10
IGWO:最差值: 8.6153e-14, 最优值: 3.9968e-14, 平均值: 6.01e-14, 标准差: 1.0894e-14, 秩和检验: 1
PSO:最差值: 9.5573, 最优值: 5.1314, 平均值: 8.1017, 标准差: 1.0907, 秩和检验: 2.6808e-11
KH:最差值: 2.041, 最优值: 0.22494, 平均值: 0.66476, 标准差: 0.58667, 秩和检验: 2.6808e-11
GWO:最差值: 1.3589e-13, 最优值: 7.5495e-14, 平均值: 1.0368e-13, 标准差: 1.6636e-14, 秩和检验: 7.4888e-11
函数:F18
IGWO:最差值: 3, 最优值: 3, 平均值: 3, 标准差: 1.8105e-15, 秩和检验: 1
PSO:最差值: 3, 最优值: 3, 平均值: 3, 标准差: 9.9301e-16, 秩和检验: 0.00073098
KH:最差值: 3.0002, 最优值: 3, 平均值: 3, 标准差: 4.5556e-05, 秩和检验: 2.6588e-11
GWO:最差值: 3.0002, 最优值: 3, 平均值: 3, 标准差: 3.4932e-05, 秩和检验: 2.6588e-11
函数:F19
IGWO:最差值: -3.8628, 最优值: -3.8628, 平均值: -3.8628, 标准差: 2.5243e-15, 秩和检验: 1
PSO:最差值: -3.8549, 最优值: -3.8628, 平均值: -3.8625, 标准差: 0.001439, 秩和检验: 0.0018957
KH:最差值: -3.8628, 最优值: -3.8628, 平均值: -3.8628, 标准差: 2.1996e-06, 秩和检验: 1.4059e-11
GWO:最差值: -3.8549, 最优值: -3.8628, 平均值: -3.8616, 标准差: 0.002286, 秩和检验: 1.4059e-11

实验结果表明,与实验中使用的算法相比,IGWO算法具有很强的竞争力,并且往往更优越。

三、参考文献

[1] Mohammad H. Nadimi-Shahraki, Shokooh Taghian, Seyedali Mirjalili. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: 113917.
[2] Afshin Faramarzi, Mohammad Heidarinejad, Brent Stephens, et al. Equilibrium optimizer: A novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: 105190.

  • 8
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论
基于莱维飞行和随机游动策略改进灰狼优化算法是一种在现代优化算法中应用的智能优化算法。该算法以模拟狼群捕食过程为基础,通过引入莱维飞行策略和随机游动策略来提高算法的全局和局部搜索能力,以解决传统灰狼算法收敛速度慢且易陷入局部最优的问题。改进灰狼优化算法利用改进的衰减因子来平衡全局搜索和局部搜索能力,并通过莱维飞行策略和随机游动策略来增强算法的搜索能力。这些改进使得算法能够更好地适应不同的优化问题,并提高了算法的收敛速度和搜索精度。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [基于莱维飞行和随机游动策略的灰狼算法求解单目标matlab源码](https://blog.csdn.net/qq_37934722/article/details/131621489)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [基于莱维飞行和随机游动策略的灰狼算法](https://blog.csdn.net/weixin_43821559/article/details/115584292)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值