【草履虫都能学会】03 单目视觉

前言

  根据前两篇文章,想必读者已经掌握了计算机视觉的相关基础,那么接下来就开始正式的学习。
  本篇要介绍的是单目视觉。单目视觉指研究单张像片、其所拍摄的物理世界以及光学传感器三者间的几何关系。单目视觉也叫做单目解析。
  本文将介绍各类坐标系、坐标系间的转换方式以及单目视觉的成像几何方程。

一、坐标系

1. 笛卡尔坐标系

其实就是从小学到现在学到的直角坐标系。包括二维平面直角坐标系和三维空间直角坐标系。

2. 图像坐标系

图像坐标系指的是在拍摄的像片上建立的坐标系,包括像素坐标系和像平面坐标系。

像素坐标系。指的是以像素pixel为单位的坐标系,以数字图像的形式呈现在屏幕上的图像,由于电子屏幕以像素为单位显示内容,所以像素坐标系也以单个像素为单位建立。通常以像片左上角为坐标原点。

像平面坐标系。以实际的长度为单位,一般取毫米mm。坐标原点一般在图像中心。
在这里插入图片描述
如图, I O i j J IO_{ij}J IOijJ表达的是像素坐标系, X O x y Y XO_{xy}Y XOxyY表达的是像平面坐标系。

两套坐标系之间可以进行相互转换。令 ( I 0 , J 0 ) (I_0,J_0) (I0,J0)为像素坐标系原点, ( x 0 , y 0 ) (x_0,y_0) (x0,y0)为像平面坐标系原点, d d d为每个像素格的实际大小, ( I , J ) (I,J) (I,J) ( x , y ) (x,y) (x,y)表示图像上任意一点在两套坐标系下的坐标。两者相互转换的公式为: { x = ( I − I 0 ) × d + x 0 y = ( J − J 0 ) × d + y 0 { I = ( x − x 0 ) × 1 d + I 0 J = ( y − y 0 ) × 1 d + J 0 \begin{equation*} \left\{ \begin{aligned} x &= (I - I_0) \times d + x_0 \\ y &= (J - J_0) \times d + y_0 \end{aligned} \right. \end{equation*} \quad\quad\begin{equation*} \left\{ \begin{aligned} I &= (x - x_0) \times \frac{1}{d} + I_0 \\ J &= (y - y_0) \times \frac{1}{d} + J_0 \end{aligned} \right. \end{equation*} {xy=(II0)×d+x0=(JJ0)×d+y0 IJ=(xx0)×d1+I0=(yy0)×d1+J0

3. 线阵相机坐标系

线阵相机的成像采用线阵CCD推扫式成像。拍摄时,摄影平台飞行方向垂直于CCD扫描线,随着摄影平台的向前移动,完成推扫成像。
在这里插入图片描述

线阵相机只有一个参数,表示为 ( 0 , y ) (0,y) (0,y)。但是在推扫得到的二维图像上, x x x坐标不再为0,需要结合运动方程来表示各扫描行之间的距离关系: x k = x 0 + a t x_k=x_0+at xk=x0+at该式表示在 t t t时刻扫描线距离出发点 x 0 x_0 x0的距离 x k x_k xk;反之,从 x x x坐标也可以推出成像时刻 t t t: t = t 0 + b ( x k − x 0 ) t=t_0+b(x_k-x_0) t=t0+b(xkx0)其中 b b b表示每行影像采样时间, t 0 t_0 t0表示在起始点 x 0 x_0 x0的成像时刻。

4. 相机坐标系

也叫传感器坐标系。从图像坐标系到传感器坐标系的过程,也是二维图像平面到三维真实世界的转换过程。相机坐标系也自然而然成为了2D坐标和3D坐标间相互联系的纽带。

相机坐标系是一个三维坐标系,是以相机聚焦中心为原点,光轴为 Z Z Z轴建立的三维直角坐标系。其实也就是相机为坐标原点,镜头指向为 Z Z Z轴方向,在真实世界中建立的一个坐标系。
在这里插入图片描述
用这张图可以直观的展现出两台坐标系间的关系。其中 x y z O xyzO xyzO为相机坐标系, x ′ O ′ y ′ x'O'y' xOy为图像坐标系。

二维图像上的一点 x x x和对应的相机坐标系下的点 x c x_c xc之间的转换可以用相机内参矩阵 K K K完成,如下: x = K x c = [ f x s x 0 0 f y y 0 0 0 1 ] x c \begin{equation*} \mathbf{x} = {K} \mathbf{x}_c = \begin{bmatrix} f_x & s & x_0 \\ 0 & f_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x}_c \end{equation*} x=Kxc= fx00sfy0x0y01 xc这个内参矩阵可以通过相机检校得到。

5. 平台传感器

汽车、飞机、卫星等载体上可能会有多个相机或传感器,为了描述载体上这多个传感器之间的相对位置关系,需要设立固定的平台坐标系 x b x_b xb。此时传感器坐标和平台坐标之间的转换只需要刚体变换 x b = [ R ∣ T ] x c x_b=[R|T]x_c xb=[RT]xc

二、普通光学相机的成像模型

了解用到的基本坐标系后,现在进一步介绍一系列光学相机的成像模型。

1. 平面相机

在01篇的几何变换部分中,已经介绍过平面相机的成像模型,也就是三维世界到二维世界的透视变换,现在基于坐标系统进一步展开。

假定相机已经过标定,也就是内方位矩阵 K K K已知(相机检校目的就是获取相机内方位元素)。相机坐标 x c x_c xc和真实坐标 X w X_w Xw之间的关系如下: x c = λ X c = λ [ R ∣ T ] X w x_c=\lambda X_c=\lambda [R|T]X_w xc=λXc=λ[RT]Xw其中 x c = K − 1 x x_c=K^{-1}x xc=K1x x x x是像素坐标。请注意 x c x_c xc也是三维的坐标,包含 x y z xyz xyz,不要和二维像素坐标混淆。把世界坐标 X w X_w Xw旋转平移到相机坐标系后,两套坐标只相差一个比例因子 λ \lambda λ。把上式展开之后如下表示: [ x y z ] = λ R [ X + X S Y + Y S Z + Z S ] \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \lambda {R} \begin{bmatrix} X + X_S \\ Y + Y_S \\ Z + Z_S \end{bmatrix} xyz =λR X+XSY+YSZ+ZS
平面相机需要记住成像方程。

2. 线阵相机

多用于卫星摄影测量,对计算机视觉来说无需掌握太多,了解即可。

对于一维CCD线阵相机,可以沿用面阵相机的成像方程,只不过令 x ≡ 0 x \equiv 0 x0即可。

但是实际上处理的是由时间积分成的二维图像,所以更倾向于建立一个二维成像模型(也称为轨道模型)。但是由于平台运动条件以及其他原因影响,任一时刻下的CCD扫描行都有其自身的外方位元素,所以严格的二维成像模型并不存在,只能在几何上进行模拟。常用的几何模型通常都有一个基本假设:平台运行平稳。下面介绍几个常用轨道模型。

二次多项式模型。模型方程如下: X t = X 0 + A t + B t 2 X_t=X_0+At+Bt^2 Xt=X0+At+Bt2其中 X t X_t Xt是卫星平台的外方位元素包含三个坐标 X Y Z XYZ XYZ和三个旋转因子; A 、 B A、B AB是对应的仿射系数; X 0 X_0 X0 t = 0 t=0 t=0初始状态的外方位元素。共计18个未知参数。

马尔科夫随机模型。马尔科夫随机模型假定:运动平台的当前状态(当下的外方位元素、速度、加速度等)仅由上一时刻的状态决定,与其更早的状态无关。模型表达如下: X t = X t − 1 + V Δ t X_t=X_{t-1}+V\Delta t Xt=Xt1+VΔt其中, V V V代表三维空间的线速度和角速度, Δ t \Delta t Δt表示相邻CCD扫描线之间的积分时间。

3. 鱼眼相机

武大摄影测量方向的同学了解一般原理就行,考试一般不考鱼眼相机。

鱼眼相机广泛应用于测绘,交通和安防系统等,例如商场的监控镜头就是鱼眼。鱼眼镜头是球面的一部分,相比平面相机来说,鱼眼存在向内折射,从而能够显示更大范围的场景。平面相机成像模型和鱼眼相机的成像模型如图:在这里插入图片描述
左图为平面相机,右图为鱼眼相机。可以看出从物点发出的光线经过相机时发生了折射。在平面相机中 α = β \alpha=\beta α=β,但是在鱼眼相机中,两者不相等,关系为 t a n β = r f tan\beta=\frac{r}{f} tanβ=fr

对于鱼眼相机,也可以使用投影模型进行数学上的拟合。以下是几种典型的投影模型:

  1. 等距投影。入射角和半径成线性关系,量测了像点坐标 x = ( x , y ) x=(x,y) x=(x,y),可以计算半径 r = x 2 + y 2 r=\sqrt{x^2+y^2} r=x2+y2 ,并建立半径 r r r和入射角 α \alpha α之间的关系如下: r = f ⋅ α r=f·\alpha r=fα
  2. 等积投影。入射角和成像面上的投影面积之比为常数。 r = 2 f ⋅ sin ⁡ 0.5 α r=2f\cdot\sin0.5\alpha r=2fsin0.5α
  3. 正交投影。入射角的正弦和半径成正比。 r = f ⋅ sin ⁡ α r=f\cdot\sin\alpha r=fsinα

其中,等距投影和等积投影应用最广泛。选择某种投影模型后,就可以进一步推导鱼眼相机的成像方程了。这里选择等距投影进行推导。

同样令物点世界坐标为 X w X_w Xw,由物点旋转平移( R , T R,T R,T)后转换到相机坐标系之下,则其相机坐标为 X c = [ X , Y , Z ] = λ [ R ∣ T ] X w X_c=[X,Y,Z]=\lambda [R|T]X_w Xc=[X,Y,Z]=λ[RT]Xw把上式带入 r = f ⋅ α r=f·\alpha r=fα中,可以得到如下结果 x 2 + y 2 = f α = f arctan ⁡ X 2 + Y 2 Z \sqrt{x^2 + y^2} = f \alpha = f \arctan \frac{\sqrt{X^2 + Y^2}}{Z} x2+y2 =fα=farctanZX2+Y2 其中 ( x , y ) (x,y) (x,y)代表二维像片上的坐标, ( X , Y , Z ) (X,Y,Z) (X,Y,Z)代表相机坐标 X c X_c Xc。看上面的成像模型图易知, Y X = y x \frac{Y}{X}=\frac{y}{x} XY=xy,带入继续展开可以得到最终结果: x − x 0 = f X arctan ⁡ X 2 + Y 2 Z X 2 + Y 2 x - x_0 = fX \frac{\arctan \frac{\sqrt{X^2 + Y^2}}{Z}}{\sqrt{X^2 + Y^2}} xx0=fXX2+Y2 arctanZX2+Y2 y − y 0 = f Y arctan ⁡ X 2 + Y 2 Z X 2 + Y 2 y - y_0 = fY \frac{\arctan \frac{\sqrt{X^2 + Y^2}}{Z}}{\sqrt{X^2 + Y^2}} yy0=fYX2+Y2 arctanZX2+Y2
上式就是等距投影下的鱼眼相机成像几何方程

4. 通用几何成像模型

什么是“通用”?意味着直接用一组参数去拟合物点和像点之间的对应关系,而不需要考虑什么几何变换和传感器内方位元素。
这部分仅做了解即可,公式太复杂不用背。

常用的通用几何成像模型是有理函数模型(Rational Function Model,RFM)。无论物点和像点之间的关系有多么复杂,都只用一个变换矩阵来拟合,如下例: [ x y 1 ] = λ [ L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 10 L 11 1 ] [ X Y Z 1 ] \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} =\lambda \begin{bmatrix} L_1 & L_2 & L_3 & L_4 \\ L_5 & L_6 & L_7 & L_8 \\ L_9 & L_{10} & L_{11} & 1\end{bmatrix} \begin{bmatrix} X \\Y \\Z \\1\end{bmatrix} xy1 =λ L1L5L9L2L6L10L3L7L11L4L81 XYZ1 式子展开表示为 { x = L 1 X + L 2 Y + L 3 Z + L 4 L 9 X + L 10 Y + L 11 Z + 1 y = L 5 X + L 6 Y + L 7 Z + L 8 L 9 X + L 10 Y + L 11 Z + 1 \left\{ \begin{aligned} x &= \frac{L_1 X + L_2 Y + L_3 Z + L_4}{L_9 X + L_{10} Y + L_{11} Z + 1} \\ y &= \frac{L_5 X + L_6 Y + L_7 Z + L_8}{L_9 X + L_{10} Y + L_{11} Z + 1} \end{aligned} \right. xy=L9X+L10Y+L11Z+1L1X+L2Y+L3Z+L4=L9X+L10Y+L11Z+1L5X+L6Y+L7Z+L8上式就是最简单的RFM(一阶分式),本质上等价于直接线性变换(Direct Linear Transformation,DLT)。等式右边的大写 [ X , Y , Z , 1 ] T [X,Y,Z,1]^T [X,Y,Z,1]T是物点的三维世界坐标, [ x , y , 1 ] [x,y,1] [x,y,1]是二维像点坐标。以 L i L_i Li组成的3×4矩阵是相机矩阵 P P P,相当于把内参矩阵 K K K和外参矩阵 [ R ∣ T ] [R|T] [RT]同时考虑,整合为一个矩阵,直接完成二维像点到三维物点的转换。

上式是一种简洁并严格的几何模型,在近景摄影测量和计算机视觉中大量应用。包含11个未知参数,可以利用6组以上的控制点,结合最小二乘平差法求解。

除了一阶RFM(即DLT),三阶有理分式也很常见,主要应用于线阵相机中。将不超过三阶的多项式写为: p = ∑ i = 0 m 1 ∑ j = 0 m 2 ∑ k = 0 m 3 a i j k X i Y j Z k = a 0 + a 1 Z + a 2 Y + a 3 X + a 4 Z Y + a 5 Z X + a 6 Y X + a 7 Z 2 + a 8 Y 2 + a 9 X 2 + a 10 Z Y X + a 11 Z 2 Y + a 12 Z 2 X + a 13 Y 2 Z + a 14 Y 2 X + a 15 Z X 2 + a 16 Y X 2 + a 17 Z 3 + a 18 Y 3 + a 19 X 3 \begin{aligned} p &= \sum_{i=0}^{m_1} \sum_{j=0}^{m_2} \sum_{k=0}^{m_3} a_{ijk} X^i Y^j Z^k \\ &= a_0 + a_1 Z + a_2 Y + a_3 X + a_4 ZY + a_5 ZX + a_6 YX + a_7 Z^2 \\ &\quad + a_8 Y^2 + a_9 X^2 + a_{10} ZYX + a_{11} Z^2 Y + a_{12} Z^2 X + a_{13} Y^2 Z \\ &\quad + a_{14} Y^2 X + a_{15} ZX^2 + a_{16} YX^2 + a_{17} Z^3 + a_{18} Y^3 + a_{19} X^3 \end{aligned} p=i=0m1j=0m2k=0m3aijkXiYjZk=a0+a1Z+a2Y+a3X+a4ZY+a5ZX+a6YX+a7Z2+a8Y2+a9X2+a10ZYX+a11Z2Y+a12Z2X+a13Y2Z+a14Y2X+a15ZX2+a16YX2+a17Z3+a18Y3+a19X3其中 m i m_i mi为整数,其和不超过3;三阶多项式共有20个未知参数,根据爱因斯坦约定,张量求和省略求和符号,可以写为: p = ∑ i = 0 m 1 ∑ j = 0 m 2 ∑ k = 0 m 3 a i j k X i Y j Z k = a i j k X i Y j Z k p = \sum_{i=0}^{m_1} \sum_{j=0}^{m_2} \sum_{k=0}^{m_3} a_{ijk} X^i Y^j Z^k = a_{ijk} X^i Y^j Z^k p=i=0m1j=0m2k=0m3aijkXiYjZk=aijkXiYjZk于是线阵相机的三阶RFM模型可以写为: { r n = p 1 ( X n , Y n , Z n ) p 2 ( X n , Y n , Z n ) = a i j k X n i Y n j Z n k b i j k X n i Y n j Z n k c n = p 3 ( X n , Y n , Z n ) p 4 ( X n , Y n , Z n ) = c i j k X n i Y n j Z n k d i j k X n i Y n j Z n k \left\{ \begin{aligned} r_n &= \frac{p_1(X_n, Y_n, Z_n)}{p_2(X_n, Y_n, Z_n)} = \frac{a_{ijk} X_n^i Y_n^j Z_n^k}{b_{ijk} X_n^i Y_n^j Z_n^k} \\ c_n &= \frac{p_3(X_n, Y_n, Z_n)}{p_4(X_n, Y_n, Z_n)} = \frac{c_{ijk} X_n^i Y_n^j Z_n^k}{d_{ijk} X_n^i Y_n^j Z_n^k} \end{aligned} \right. rncn=p2(Xn,Yn,Zn)p1(Xn,Yn,Zn)=bijkXniYnjZnkaijkXniYnjZnk=p4(Xn,Yn,Zn)p3(Xn,Yn,Zn)=dijkXniYnjZnkcijkXniYnjZnk这里 ( r n , r m ) (r_n,r_m) (rn,rm) ( X n , Y n , Z n ) (X_n,Y_n,Z_n) (Xn,Yn,Zn)分别是图像坐标和物点坐标的归一化形式。由于一个三阶多项式有20个未知参数,所以线阵相机RFM模型的未知参数有20×4=80个,其中令 b 19 b_{19} b19 d 19 d_{19} d19为1,实际有78个参数,可以利用39组以上的控制点进行最小二乘平差求解。

PS:全景相机的成像模型不再赘述,摄测方向期末考试不考。对于其他读者可以自行翻阅《只能摄影测量学导论》作以了解。

三、其他补充

1. 空间后方交会

无论面阵、线阵还是曲面相机,其成像模型都包含三类参数:像点观测值、物点观测值、相机模型内外参数。利用像点观测值和对应的物点观测值求取相机模型参数的过程,称为空间后方交会。对于单像解析,通常假定内方位元素 K K K已知,因此只需要求取外方位元素 [ R ∣ T ] [R|T] [RT],也叫做外定向。

对于模型的解法,无论是物理成像模型还是通用成像模型,都可以基于一定数量的控制点用线性或者非线性最小二乘求解。在摄影测量中更倾向于非线性最小二乘求解。

如果采用线性最小二乘,或奇异值分解(Singular Value Decomposition,SVD),就需要将 [ R ∣ T ] [R|T] [RT] K [ R ∣ T ] K[R|T] K[RT]直接看做未知数。这里考虑内方位 K K K未知的情况,那么需要直接求解3×4的相机矩阵 P P P,也就是通用成像模型中的一阶RFM。 P P P中有11个参数,需要列出11个以上的线性方程组求解。将DLT方程变形得到: { x ( L 9 X + L 10 Y + L 11 Z + 1 ) − ( L 1 X + L 2 Y + L 3 Z + L 4 ) = 0 y ( L 9 X + L 10 Y + L 11 Z + 1 ) − ( L 5 X + L 6 Y + L 7 Z + L 8 ) = 0 \left\{ \begin{aligned} &x (L_9 X + L_{10} Y + L_{11} Z + 1) - (L_1 X + L_2 Y + L_3 Z + L_4) = 0 \\ &y (L_9 X + L_{10} Y + L_{11} Z + 1) - (L_5 X + L_6 Y + L_7 Z + L_8) = 0 \end{aligned} \right. {x(L9X+L10Y+L11Z+1)(L1X+L2Y+L3Z+L4)=0y(L9X+L10Y+L11Z+1)(L5X+L6Y+L7Z+L8)=0写为矩阵形式并最小化得到: min ⁡ L ∑ i ∥ A L ∥ 2 \min_{L} \sum_{i} \|AL\|^2 LminiAL2使用最小二乘求解上式即可。

解出 L L L后,也就是解出了 P P P矩阵,但是 P P P矩阵包含了内方位元素和外方位元素,所以可以从 P P P矩阵恢复内参矩阵和外参矩阵,这个过程称为“相机矩阵的分解”。可以利用SVD分解和RQ分解进行相机矩阵的分解,具体略。

2. 正算和反算

将世界坐标和相机参数作为输入,求取像点坐标的过程,叫做“反算”。

反之,将像点坐标和相机参数作为输入,求取对应世界坐标的过程,称为“正算”。

3. 灭点和灭线

灭点是透视投影中非常特殊的点,是现实世界中无穷远点在像片上的投影。

例如,现实中的两条铁轨相交于无穷远,在像片上,延长两条铁轨,相交于一点,就是“铁轨方向的”灭点。
在这里插入图片描述
再如,建筑物立面的铅垂线相互平行,它们在像片上投影的交点就是“垂直方向的”灭点,其在摄影测量中有个专业的名词:“像底点”。

考虑任意方向 d d d的灭点,也就是平行于 d d d的所有直线在无穷远处的交点,借助齐次式可以表达为 X ∞ = ( d , 0 ) X_{\infty} = (d, 0) X=(d,0),带入到透视变换方程可得: v = K [ R ∣ T ] X ∞ = K R d \mathbf{v} = K \begin{bmatrix} R | T\end{bmatrix} \mathbf{X}_{\infty} = KRd v=K[RT]X=KRd上式就是灭点的几何成像模型。

而灭线是无穷远平面在像片的投影,可以利用两个灭点确定灭线。比如地平面上的方形地砖,分别延长其相互垂直的平行线段,得到两个灭点,其连线就是“地平面方向的”灭线。在这里插入图片描述
除了地平面,窗户、墙壁、栅栏等具有平面特性、且易提取两组平行线的物体,都可作为计算灭线的潜在目标。

4. 相机检校

由于相机镜头可能存在变形,所以拍摄出来的像片也会出现一些畸变,为了消除镜头畸变,提高拍摄的精度,需要在拍摄之前对相机进行相机检校,获取相机的内参 K K K

但是一般用 K K K无法完全表达镜头的变形,于是在内方位元素 ( x 0 , y 0 , f ) (x_0,y_0,f) (x0,y0,f)的基础上再加一组额外参数来进一步拟合镜头的畸变,这个方法也称为“附加参数法”。主要包括径向畸变和切向畸变: d x = x ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 1 ( r 2 + 2 x 2 ) + 2 p 2 x y d y = y ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 2 ( r 2 + 2 y 2 ) + 2 p 1 x y \begin{align*} dx &= x \left( k_1 r^2 + k_2 r^4 + k_3 r^6 \right) + p_1 \left( r^2 + 2x^2 \right) +2p_2 xy \\ dy &= y \left( k_1 r^2 + k_2 r^4 + k_3 r^6 \right) + p_2 \left( r^2 + 2y^2 \right) + 2p_1 xy \end{align*} dxdy=x(k1r2+k2r4+k3r6)+p1(r2+2x2)+2p2xy=y(k1r2+k2r4+k3r6)+p2(r2+2y2)+2p1xy式子中, x = x ′ − x 0 , y = y ′ − y 0 r 2 = x 2 + y 2 \begin{align*} x &= x' - x_0, \quad y = y' - y_0 \\ r^2 &= x^2 + y^2 \end{align*} xr2=xx0,y=yy0=x2+y2其中 ( x ′ , y ′ ) (x',y') (x,y)是像片坐标的原始量测值, k i k_i ki为径向畸变参数, p i p_i pi为切向畸变参数。 ( d x , d y ) (dx,dy) (dx,dy)即附件相机畸变参数。最终的附加畸变参数的几何成像模型可以表示为: x − d x = − f X ‾ Z ‾ y − d y = − f Y ‾ Z ‾ \begin{align*} x - dx &= -f \frac{\overline{X}}{\overline{Z}} \\ y - dy &= -f \frac{\overline{Y}}{\overline{Z}} \end{align*} xdxydy=fZX=fZY ( d x , d y ) (dx,dy) (dx,dy)代替原来的 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)来拟合相机镜头的畸变。上式含有6个外方位元素,3个内方位元素,5个畸变参数{ k 1 , k 2 , k 3 , p 1 , p 2 k_1,k_2,k_3,p_1,p_2 k1,k2,k3,p1,p2},共14个未知参数,需要7组以上的控制点结合非线性最小二乘求解。

例如可以用自己的手机相机对检校棋盘格进行不同角度的拍摄,然后测量得到真实世界的棋盘格坐标以及二维图片中的格点坐标,用最小二乘编程求解。具体的相机检校实验我会单独写一篇博文进行讲解,此处做了解即可。

小结

介绍了单目视觉的相关内容,包括一系列坐标系,普通相机的光学成像模型,以及相关的内容补充。其中需要熟练掌握的是坐标系和平面相机的成像模型。过于复杂的公式了解即可,无需死记硬背。

  • 12
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值