租用GPU进行深度学习(神经网络)的模型训练

我的GPU型号是NVIDA GeForce RTX 3060 在训练ephoch=300,大概两万张图片,训练了将近20个小时。

发现租用GPU进行模型训练一方面的原因是不用配置环境,节省很多麻烦事。因为用cpu训练非常的慢,然后配置GPU的环境,配置cuda和cudann,加上一些版本,驱动,兼容等问题,需要花很长时间。另一方面,长期用自己的笔记本电脑训练模型的话,电脑的寿命减少的很快。

下面给大家推荐两个我自己用的很好用的租用GPU的平台。理由在于数据集的上传速度够快,11个G的数据集不会超过30min,2个G的数据不会超过1min。价格也足够实惠。

1.Gpushare Cloud 

(1)新人注册,完成任务有50元的代金券。

2.FeaTurize

其中Featurize,我在训练YOLOV7.0的时候,还是很顺利的,稍微修改下.yaml文件还有train.py轻松开训练。但是在使用恒源云的时候,训练有些麻烦,数据集不能够放在hy-tmp文件中(数据储存),放在那里面会一直报错读取不到数据集。其次,路径问题,路径不能设置绝对路径,还有竟然会出现不能下载YOLO字体而报错,只能自己先下载好,然后在放进去。

然后FeaTurize我写了一个教程,给大家参考,方便大家快速上手。

如何用Featurize进行深度学习训练_featurize平台训练自己的数据集-CSDN博客

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lylsalt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值