求解极限的特殊方法(三)

        本文是从高等数学中学习过的中值定理(微分中值定理和积分中值定理)出发,介绍求解极限的一些比较新颖的思路,并介绍一些相对便捷的求解极限的判断技巧,仅供后续的学习与交流。

一、中值定理

(一)微分中值定理求解极限

        我们在高等数学中所学习的微分中值定理主要包括罗尔定理、拉格朗日中值定理、柯西中值定理等等. 本文讲解用微分中值定理求极限,主要运用的是拉格朗日中值定理和柯西中值定理。

        我们先来看如何使用拉格朗日中值定理求解极限,下面是拉格朗日中值定理的内容:

        我们下面举两个例子来解释里面的原理,例子如下:

                                        \lim_{x\to +\infty }\frac{1}{2}x^{2}\left [ \ln arctan(x+1)-\ln arctan(x) \right ]

                                        \lim_{x\to 0}\frac{e^{tanx}-e^{sinx}}{x^{2}\ln (x+1)}

        我们先来看第一个例子,该极限其实可以用洛必达法则来求解,但是过程比较繁琐,我们结合拉格朗日中值定理来看,\ln arctan(x+1)-\ln arctan(x)就是函数

                                         f(x)=\ln arctanx

\left [ x,x+1 \right ]这个区间上的增量,也就是中值定理里面的f(b)-f(a),结合中值定理,也就是存在下面这个等式

                     \ln arctan(x+1)-\ln arctan(x)=f{}'(\xi )(x+1-x)=f{}'(\xi )

其中\xi \epsilon \left ( x,x+1 \right ),且f{}'(\xi )=\frac{1}{(1+\xi ^{2})arctan\xi }。为了看起来简洁,我们进行变量统一,鉴于\xi \epsilon \left ( x,x+1 \right ),故我们可以不妨令\xi =x+\theta\theta\epsilon (0,1),那么这样子分析下来,原来的极限式子就变为:

                        lim_{x\to +\infty }\frac{x^{2}}{2}\frac{1}{\left [ 1+(x+\theta )^{2} \right ]arctan(x+\theta )}=\lim_{x\to +\infty }\frac{x^{2}}{1+(x+\theta )^{2}}\frac{1}{arctan(x+\theta )}\frac{1}{2}

现在我们就可以求解极限了,当x\to +\infty时,由于\theta\epsilon (0,1),非常小,可以忽略不计,故原式的极限值为1\times \frac{1}{\frac{\pi }{2}}\times \frac{1}{2}=\frac{1}{\pi }

        所以,当我们求解极限时遇到函数值增量,可以考虑使用拉格朗日中值定理,将函数的差值转换为某一点的导数值,然后大胆设辅助参数(这些参数都是设而不求的,仅仅只是辅助化简),这些参数到后面与求解极限没有任何关系。

        下面是对第二个例子的简单处理,后面的计算可自行完成。

                        \lim_{x\to 0}\frac{e^{tanx}-e^{sinx}}{x^{2}\ln (x+1)}=\lim_{x\to 0}\frac{e^{\alpha }(tanx-sinx)}{x^{2}ln(1+x)}

        接着我们来看如何应用柯西中值定理来求解极限,下面是柯西中值定理的内容:        

        与讲解拉格朗日一样,我们也通过举例来阐释应用柯西中值定理求解极限的思路,例子如下: 

                                                \lim_{x\to 2}\frac{sin(x^{x})-sin(2^{x})}{2^{x^{x}}-2^{2^{x}}}

        根据题意与柯西中值定理,我们可以直接看出

                                                f(x)=sinx

                                ​​​​​​​        ​​​​​​​        g(x)=2^{x}

        对上述两个函数求导,并结合柯西中值定理,我们可以得出

                                                \frac{sin(x^{x})-sin(2^{x})}{2^{x^{x}}-2^{2^{x}}}=\frac{cos\theta }{2^{\theta }\ln 2}

        其中\theta一定是介于x^{x}2^{x}之间的,因为我们不清楚x^{x}2^{x}谁大谁小,所以暂时先不管,但是\theta一定是介于x^{x}2^{x}之间,这个很重要,是后面分析的关键(其实就是夹逼准则的先前条件)。当x\to 2时,存在

                                                \lim_{x\to 2}x^{x}=4

                                                \lim_{x\to 2}2^{x}=4

我们结合夹逼准则,故存在\lim_{x\to 2}\theta =4,即当x\to 2时,\theta是趋于4的。所以原来极限式子的值为

                                                \lim_{\theta \to 4}\frac{cos\theta }{2^{\theta }\ln 2}=\frac{cos4}{16\ln 2}

       下面是夹逼准则的内容,有遗忘的可以看看,后面讲积分中值定理也会用到。

(二)积分中值定理求解极限

        我们在这里讲解使用积分中值定理求解极限使用的是积分第一中值定理,(积分中值定理解决的一般都是带定积分的极限)内容如下:        

        积分中值定理虽然看起来像是没有什么用的定理,但其偏偏可以去掉积分号,使得极限求解变得简单。与之前一样,我们还是举两个例子来说明里面的原理,例子如下:

                                        \lim_{n\to \infty }\int_{0}^{\frac{\pi }{4}}sin^{n}xdx

                                        \lim_{n\to \infty }\int_{n}^{n+1}\frac{sinx}{x}dx

        我们先来看第一个例子,根据积分中值定理进行变化,即

                                        \int_{0}^{\frac{\pi }{4}}sin^{n}xdx=\left ( \frac{\pi }{4}-0 \right )sin^{n}(\xi )

        因为0\leqslant \xi \leqslant \frac{\pi }{4},所以我们结合函数f(x)=sin^{n}(x)在区间\left [ 0,\frac{\pi }{4} \right ]上单调递增的特性可以知道

                                        0\leqslant \sin^{n}(\xi ) \leqslant sin^{n}\frac{\pi }{4}=\left ( \frac{\sqrt{2}}{2} \right )^{n}

        我们还知道当n\to \infty时,0\left ( \frac{\sqrt{2}}{2} \right )^{n}的极限均为0,所以根据夹逼准则,\sin^{n}(\xi )的极限也为0,所以我们知道了

                                     \lim_{n\to \infty }\int_{0}^{\frac{\pi }{4}}sin^{n}xdx=\lim_{n\to \infty }\left ( \frac{\pi }{4}-0 \right )sin^{n}(\xi )=0

        对于第二个例子也是同样的思路与方法,下面我做简单推导。

                     \lim_{n\to \infty }\int_{n}^{n+1}\frac{sinx}{x}dx=\lim_{n\to \infty}\frac{sin\theta }{\theta }(n+1-n)=\lim_{n\to \infty}\frac{sin\theta }{\theta }

        由于\theta \epsilon \left [ n,n+1 \right ],当n\to \infty时,\theta \rightarrow +\infty,故而\left | sin\theta \right |\leqslant 1,即有界,有界量除以无穷大量的极限为0,所以原极限的值为0

        上述方法只是提供新的求解思路,并非主流的求解方法,而且适用题型较少,主要是开阔思路,大家量力掌握。

二、一些判断技巧

        我们求解一道极限题的时候,一般都会试一下把趋近于的那个数带进去看看,然后判断有哪些是无穷小、有哪些是无穷大,哪些是有界的部分。一般看清这些,结合一些判断技巧,我们可以快速解决问题。

        1.“有界量”乘以“无穷小量”趋近于0 ;

        2.“有界量”除以“无穷大量”趋近于0 ;

        3.“趋于非零常数的量”乘以“无穷大量”趋近于\infty

        4.“绝对值小于1的数”的无穷大次幂趋于0,“绝对值大于1的数”的无穷
大次幂趋于\infty

        5.正的常数开无穷大次方趋近于1 。

        上述判断技巧都是一些常见的内容,整理总结出来以供大家学习与交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雨夜陌路萧郎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值