拉格朗日中值定理求极限什么时候适用。

文章探讨了拉氏定理在处理极限问题时的应用,强调了当导数极限为常数或零时的不同处理策略。如果导数极限为常数,可以直接使用;而当导数极限为零时,需分析r(x)与g(x)的阶数关系,只有在同阶或特定低阶情况下才能应用拉氏定理。此外,文中还给出了相关经典例题来进一步说明这些原则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.拉氏定理遇到情况

形如:lim ( f[r(x)] - f[g(x)] ) / g = lim f ’ (ζ) (r(x) - g(x) )/g

1.若lim f ’ (ζ) = c (c为常数)可以直接用。

2.若lim f ’ (ζ) = 0,需要判断r(x) - g(x)与无穷小的关系:
①若r(x) - g(x) 与 g 同阶,则可以用。
②若r(x) - g(x) 是低阶 , 且 r(x) ~ g(x) 则 可用。
③若r(x) - g(x) 是低阶 , 且 r(x) 不等价与 g(x) 则不可以用。

2.经典例题

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源梦想

制作不易,给几分窝囊费大哥们。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值