前置知识:积分第一中值定理
习题1
求证: lim n → + ∞ ∫ 0 π 2 sin n x d x = 0 \lim\limits_{n\to +\infty}\int_0^{\frac{\pi}{2}}\sin^nxdx=0 n→+∞lim∫02πsinnxdx=0
证明:
\qquad 令 δ → 0 + \delta\to 0^+ δ→0+,则
∫ 0 π 2 sin n x d x = ∫ 0 π 2 − δ sin n x d x + ∫ π 2 − δ π 2 sin n x d x \int_0^{\frac{\pi}{2}}\sin^nxdx=\int_0^{\frac{\pi}{2}-\delta}\sin^nxdx+\int_{\frac{\pi}{2}-\delta}^{\frac{\pi}{2}}\sin^nxdx ∫02πsinnxdx=∫02π−δsinnxdx+∫2π−δ2πsinnxdx
\qquad 由积分第一中值定理可得, ∃ ξ 1 ∈ [ 0 , π 2 − δ ] \exist\xi_1\in[0,\dfrac{\pi}{2}-\delta] ∃ξ1∈[0,2