积分第一中值定理习题

前置知识:积分第一中值定理

习题1

求证: lim ⁡ n → + ∞ ∫ 0 π 2 sin ⁡ n x d x = 0 \lim\limits_{n\to +\infty}\int_0^{\frac{\pi}{2}}\sin^nxdx=0 n+lim02πsinnxdx=0

证明:
\qquad δ → 0 + \delta\to 0^+ δ0+,则

∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 − δ sin ⁡ n x d x + ∫ π 2 − δ π 2 sin ⁡ n x d x \int_0^{\frac{\pi}{2}}\sin^nxdx=\int_0^{\frac{\pi}{2}-\delta}\sin^nxdx+\int_{\frac{\pi}{2}-\delta}^{\frac{\pi}{2}}\sin^nxdx 02πsinnxdx=02πδsinnxdx+2πδ2πsinnxdx

\qquad 由积分第一中值定理可得, ∃ ξ 1 ∈ [ 0 , π 2 − δ ] \exist\xi_1\in[0,\dfrac{\pi}{2}-\delta] ξ1[0,2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值