词袋模型和TF-IDF流程

文章介绍了词袋模型的基本概念,包括预处理、构建词表、向量化过程以及其在文本处理中的应用。同时指出词袋模型的局限性,如忽略语义和顺序信息,以及在高维稀疏数据上的挑战。最后提到了TF-IDF改进和词嵌入模型以解决这些问题。
摘要由CSDN通过智能技术生成

词袋模型

(Bag-of-Words Model)是一种用于表示文本的简单但常用的方法。它将文本看作是无序的词语集合,并忽略了词语的顺序和语法,只关注每个词语的出现频率。在词袋模型中,文本被表示为一个向量,其中每个维度对应一个词语,而向量中的每个元素表示对应词语在文本中出现的次数。

下图有误,一般词袋模型指的就是以词频作为特征基础

词袋模型的基本思想如下:

  1. 预处理:首先对文本进行预处理,包括分词、去除停用词、转换为小写等步骤。

  2. 构建词表:将所有文本中出现的词语收集起来构建一个词表,每个词语对应一个唯一的索引(维度)。

  3. 向量化:对于每个文本,根据词表的索引,统计每个词语在文本中出现的频率(或其他权重),形成一个向量表示文本。

  4. 归一化:可选步骤,对文本向量进行归一化,使其拥有相同的长度,方便后续处理。

词袋模型的优点是简单易实现,可以适用于很多文本处理任务,例如文本分类、情感分析、信息检索等。然而,它忽略了词语的顺序和语法信息,因此在一些情况下可能会损失一些文本的语义信息。此外,词袋模型会产生高维稀疏的向量表示,特别是当文本非常长或词表非常大时,会导致计算和存储开销较大。

为了克服词袋模型的一些限制,还有其他更复杂的文本表示方法,如词嵌入(Word Embedding)模型,它可以更好地捕捉词语之间的语义和上下文关系。

TF-IDF

将词袋模型中的词频换为TF*IDF即可

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下属于分类C的概率,P(D|C)是分类C中文本D出现的概率,P(C)是分类C出现的概率,P(D)是文本D出现的概率。贝叶斯算法的基本思想是计算所有可能分类的条件概率,然后选择具有最高概率的分类作为最终分类结果。 贝叶斯算法在文本分类中的实现通常包括以下步骤: 文本预处理:对文本进行分词、去除停用词等处理,得到单词列表。 特征提取:将单词列表转化为特征向量,常用的方法包括词袋模型TF-IDF模型。 训练模型:计算每个分类中每个特征的条件概率,并计算每个分类的先验概率。 分类预测:根据条件概率和先验概率计算文本属于每个分类的概率,选择具有最高概率的分类作为最终分类结果。 基于贝叶斯算法的文本分类模型可以使用多项式朴素贝叶斯(Multinomial Naive Bayes)算法、伯努利朴素贝叶斯(Bernoulli Naive Bayes)算法等不同的实现方式。 舆情文本分类模型设计 本文设计的基于贝叶斯算法的舆情文本分类模型包括以下步骤: 数据收集:收集与特定主题相关的舆情文本数据,包括新闻、微博、评论等。 数据预处理:对收集的文本数据进行分词、去除停用词等预处理操作,得到单词列表。 特征提取:将单词列表转化为特征向量,使用TF-IDF模型计算每个单词在文本中的重要性,并将其作为特征向量的值。 训练模型:使用多项式朴素贝叶斯算法对特征向量进行训练,计算每个分类中每个特征的条件概率和每个分类的先验概率。 分类预测:对新的舆情文本进行分类预测,根据条件概率和先验概率计算文本属于每个分类的概率,并选择具有最高概率的分类作为最终分类结果。 实验设计和结果分析 本文采用Python编程语言实现了基于贝叶斯算法的舆情文本分类模型,并使用实际的舆情文本数据对模型进行了实验验证。实验中,我们选择了与疫情相关的新闻和微博数据,将其分为积极、中
02-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值