(计算机毕设选题推荐)基于大数据的网购商品分析与研究

                                                                摘要

        本文旨在通过大数据技术对网购商品进行深入分析与研究。利用电商平台积累的海量交易数据、用户行为数据、商品评价信息等,采用数据挖掘、机器学习等技术手段,对网购商品的市场趋势、消费者偏好、商品质量评价等方面进行全面剖析。研究不仅揭示了网购商品市场的现状与特征,还通过构建预测模型对商品销量、用户满意度等关键指标进行预测,为电商平台、商家及消费者提供决策支持。此外,本文还探讨了大数据技术在优化商品推荐、提升用户体验、打击虚假交易等方面的应用潜力,为网购行业的健康发展提供了有益参考。

关键字:大数据,网购商品分析,数据挖掘,机器学习,市场趋势,消费者偏好,商品质量评价

                                                               Abstract

        This paper focuses on conducting in-depth analysis and research on online shopping commodities leveraging big data technologies. By utilizing the vast amounts of transaction data, user behavior data, and product review information accumulated by e-commerce platforms, this study employs data mining and machine learning techniques to comprehensively examine market trends, consumer preferences, and product quality evaluations of online shopping commodities. The research not only reveals the current status and characteristics of the online shopping commodity market but also develops predictive models to forecast key indicators such as product sales and customer satisfaction, providing decision-making support for e-commerce platforms, merchants, and consumers. Furthermore, this paper explores the potential applications of big data technologies in optimizing product recommendations, enhancing user experience, and combating fraudulent transactions, offering valuable insights for the healthy development of the online shopping industry.

Keywords: Big Data, Online Shopping Commodity Analysis, Data Mining, Machine Learning, Market Trends, Consumer Preferences, Product Quality Evaluation

目录

  1. 绪论
    • 1.1 研究背景与意义
    • 1.2 国内外研究现状
    • 1.3 研究内容与方法
    • 1.4 论文结构安排
  2. 大数据与网购商品分析理论基础
    • 2.1 大数据技术概述
    • 2.2 网购商品数据特点与分类
    • 2.3 数据分析方法与技术选择
  3. 网购商品数据收集与预处理
    • 3.1 数据来源与采集
    • 3.2 数据清洗与整合
    • 3.3 数据质量评估
  4. 网购商品市场趋势与消费者偏好分析
    • 4.1 市场趋势分析
    • 4.2 消费者偏好挖掘
    • 4.3 案例分析
  5. 网购商品质量评价与预测模型构建
    • 5.1 商品质量评价指标体系
    • 5.2 预测模型选择与构建
    • 5.3 模型验证与优化
  6. 大数据在网购商品分析中的应用实践
    • 6.1 商品推荐系统优化
    • 6.2 用户体验提升策略
    • 6.3 虚假交易识别与防范
  7. 结论与展望
    • 7.1 研究结论
    • 7.2 研究贡献与局限
    • 7.3 未来研究方向
  8. 参考文献

参考文献

  1. 李明, 张伟. 基于大数据的网购商品销量预测模型研究[J]. 商业经济研究, 2022, (10): 89-92.
  2. 王丽, 陈晓. 电商平台用户行为数据分析与消费者偏好挖掘[J]. 现代情报, 2021, 41(5): 123-129.
  3. 刘洋, 赵雷. 大数据技术在网购商品质量评价中的应用[J]. 数据分析与知识发现, 2022, 6(2): 10-18.
  4. 张华, 刘强. 基于机器学习的网购商品推荐系统优化研究[J]. 计算机工程与设计, 2021, 42(8): 2245-2252.
  5. 陈浩, 王芳. 网购商品市场趋势分析与预测[J]. 电子商务, 2022, (4): 34-38.
  6. 杨梅, 李静. 电商平台用户评价的情感分析与商品质量评估[J]. 情报科学, 2021, 39(11): 167-174.
  7. 王刚, 赵丽. 大数据环境下网购商品欺诈行为识别研究[J]. 信息系统学报, 2020, (2): 105-116.
  8. 李娜, 张明. 基于大数据的网购商品满意度预测模型构建[J]. 计算机应用研究, 2021, 38(S2): 15-18.
  9. 郑强, 刘洋. 电商平台用户画像构建与个性化推荐研究[J]. 计算机科学, 2022, 49(1): 207-212.
  10. 张伟, 李华. 大数据技术在提升网购用户体验中的应用[J]. 系统工程理论与实践, 2021, 41(12): 3223-3234.

部分成果展示:

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值