Fitting拟合的概念以及应用领域

拟合是根据数据样本建立数学模型以描述数据间关系的过程,常用于预测和推断。线性回归、多项式回归和曲线拟合是常见方法。在实际应用中,包括时间序列分析、线性回归、逻辑回归、决策树、神经网络和支持向量机等模型都利用拟合技术。正确选择模型、进行数据预处理能提高拟合效果。
摘要由CSDN通过智能技术生成

拟合(fitting)是指根据已知的数据样本,建立一个能够最好地拟合这些数据的数学模型。拟合的目标是尽可能准确地描述数据之间的关系,并能够用于预测未知数据的结果。通俗地说:拟合就是把平面上一系列的点,用一条光滑的曲线连接起来,并且根据连起来的线的趋势,预测未来的数据走向。 因为这条曲线有无数种可能,从而有各种拟合方法。

在数据分析中,拟合通常用于寻找数据之间的关系,并根据这些关系进行预测和推断。例如,拟合可以用于以下数据分析任务:

线性回归ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值