零样本思维链(Zero-shot CoT)

Large Language Models are Zero-Shot Reasoners (Kojima et al., 2022)

这篇文章研究了大型语言模型 (LLMs) 在推理任务上的能力,并提出了一种名为 Zero-shot-CoT 的新方法,该方法能够有效地引导 LLM 进行多步骤推理,并在各种推理任务上取得了显著的成果。

是基于我上一篇博客思维链 Chain-of-Thought Prompting-CSDN博客的后续研究,因为上一篇博客中的提示需要使用少样本提示(Few-shot-CoT)而提出来的零样本提示(Zero-shot-CoT)。

 文章发现,在标准零样本提示方法无法取得良好效果的情况下,简单的添加 “Let’s think step by step” 提示,就能够显著提升 LLM 在算术、符号推理以及其他逻辑推理任务上的表现。

其实过程非常简单

Zero-shot-CoT方法通过两阶段提示引导模型生成推理过程和答案:

  1. 推理提取阶段(Reasoning Extraction):通过添加触发句(如“Let’s think step by step”)让模型生成逐步的推理路径。

  2. 答案提取阶段(Answer Extraction):基于生成的推理文本,使用特定格式提示(如“Therefore, the answer is”)提取最终答案。

具体步骤
  1. 推理提取阶段

    • 输入格式:将问题转换为模板“Q: [问题]. A: [触发句]”(例如“Q: 小明有5个苹果… A: Let’s think step by step”)。

    • 模型生成:模型输出详细的推理过程(如数学计算、逻辑推导)。

  2. 答案提取阶段

    • 输入格式:将推理文本与答案触发句拼接(如“[推理文本] Therefore, the answer is”)。

    • 模型生成:输出最终答案(数值、选项字母等),并通过正则匹配提取。

例子

问题
小明有5个苹果,他每天吃2个。这些苹果能吃几天?

阶段1:推理提取

  • 输入

    Q: 小明有5个苹果,他每天吃2个。这些苹果能吃几天?  
    A: Let’s think step by step.  
  • 模型生成

    小明有5个苹果,每天吃2个。  
    第一天吃完后剩下5-2=3个;  
    第二天吃完后剩下3-2=1个;  
    第三天只能吃1个,不够2个。  
    所以总共能吃2天。  

阶段2:答案提取

  • 输入

    Q: 小明有5个苹果… A: Let’s think step by step.  
    第一天吃完后剩下5-2=3个… 所以总共能吃2天。  
    Therefore, the answer is  
  • 模型生成

    2  
  • 最终解析:通过正则提取数字“2”。

有意思的是,同时论文也告诉你不是简单添加"Let's think step by step"而是通过他们多次严重准确率最高的

论文揭示了大型语言模型在零样本场景下的强大推理潜力,挑战了传统观点(即复杂推理需依赖任务特定示例或微调)。Zero-shot-CoT不仅为推理任务提供了高效的基线方法,还提示研究者应更深入探索语言模型中隐藏的零样本能力。未来工作可进一步挖掘多任务通用提示,以释放模型的高层次认知潜能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值