大语言模型的预训练[6]:思维链(Chain-of-thought,CoT)定义原理详解、Zero-shot CoT、Few-shot CoT 以及在LLM上应用

大语言模型的预训练[6]:思维链(Chain-of-thought,CoT)定义原理详解、Zero-shot CoT、Few-shot CoT 以及在LLM上应用

1.思维链定义

  • 背景

在 2017-2019 年之间,随着 Transformer 模型的提出,计算资源与大规模语料库不断出现,自然语言处理领域发生了翻天覆地的变化,传统的全监督学习的范式逐渐达到了瓶颈,很难在传统的训练方式上取得大幅度提升。这时大规模预训练模型的如 Bert、RoBERTa 等模型的出现使得研究方向转向了以预训练模型为基础 + 下游任务 Fine-tune 的范式。

然而随着语言模型规模的不断增大,Fine-tune 的成本变得越来越高,以 GPT-3 为例,其参数量已经达到了惊人的 175B,对于这样大规模的参数,仅依靠传统 Fine-Tune 已经很难对模型起到有效的迁移,且如此大规模的参数量使得梯度的反向传播的代价也急剧增加。在这样的背景下,提示学习应运而生。提示学习通过改造下游任务、增加专家知识等形式,使得目标任务的输入输出更加贴合原始语言模型训练时的数据。

2021 年,提示学习经历了以离散提示学习(提示词的组合)为开始,连续化提示学习(连

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值