Python学习之random库的使用和圆周率的计算(九)

本文介绍了Python中的random库,包括如何生成确定性的伪随机数和各种随机数函数,如randint、randrange等。同时,文章通过两种方法展示了计算圆周率的示例,一是基于数学公式,二是运用计算思维的蒙特卡罗方法。这两种方法都揭示了Python在数值计算中的应用。
摘要由CSDN通过智能技术生成

random库的使用

需要掌握的能力
能够利用随机数种子产生"确定"伪随机数-能够产生随机整数
能够对序列类型进行随机操作

random库的基本介绍

random库是使用随机数的Python标准库

伪随机数: 采用梅森旋转算法生成的(伪)随机序列中元素
random库包括两类函数:基本随机函数和扩展随机函数

# 引用random库
import random

基本随机函数

在这里插入图片描述

2个常用基本随机函数

在这里插入图片描述

示例

在这里插入图片描述

扩展随机函数

在这里插入图片描述

6个常用扩展随机函数

randint(a, b) 和 randranged(m, n[, k])

在这里插入图片描述

getrandbits(k) 和 uniform(a, b)

在这里插入图片描述

choice(seq) 和 shuffle(seq)

在这里插入图片描述

圆周率的计算

圆周率的近似计算公式(数学思维)

在这里插入图片描述

示例

#CalPiV1.py
pi = 0
N = 100
for k in range(N):
      pi += 1/pow(16.k)*(4/(8*k+1) - 2/(8*k+4)- 1/(8*k+5)- 1/(8*k+6))
print("圆周率值是: {}".format(pi))

蒙特卡罗方法(计算思维)

在这里插入图片描述

示例

#CalPiV2.py
from random import random
from time import perf_counter
DARTS = 1000*1000
hits = 0.0
start = perf_counter()
for i in range(1, DARTS+1):
      x, y = random(), random()
      dist = pow(x ** 2 + y ** 2, 0.5)
      if dist <=1.0:
          hits = hits + 1
pi = 4 * (hits/DARTS)
print(": {}".format(pi))
print(": {:.5f}s".format(perf_counter()-start))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值