集成学习算法是一种通过组合多个弱学习器来构建强大的分类或回归模型的技术。它的核心思想是通过结合多个模型的预测结果,以投票、平均或加权的方式,来得出最终的预测结果。集成学习算法可以提高模型的准确性和鲁棒性,减少过拟合和提高泛化能力。
什么是集成学习算法?
集成学习算法主要有以下几种形式:
-
Bagging(装袋法):基于自助采样法,通过对训练数据的随机重采样构建多个独立的训练集,然后分别训练多个弱学习器,最终通过投票或平均来得到集成模型的预测结果。常见的算法包括随机森林(Random Forest)。
-
Boosting(提升法):通过迭代的方式,逐步改进弱学习器的性能。在每一轮迭代中,根据前一轮的预测结果调整样本权重,使得前一轮预测错误的样本得到更多关注,从而训练下一个弱学习器。最终通过加权投票或加权平均来得到集成模型的预测结果。常见的算法包括Adaboost和Gradient Boosting。
-
Stacking&#x