文章均为原创,旨在用来记录项目练习!如有侵权私信我删除
文章中涉及到数据集和项目代码,私信即可!
一、实验背景与目标
随着车联网技术的发展,目前大部分车辆上都装载了电子标签,借助无线射频等识别技术,可实现在信息网络平台上对车辆的属性信息、静态信息、动态信息等信息进行提取和有效利用。 通过大数据技术分析,对驾驶行为进行实时、准确、高效地评价,可以实现对车辆的实时监管,对提高道路运输过程的安全管理水平和运输效率有着重要意义。 在运输企业中,每辆营运运输车辆所规定的运输路线及配备的驾驶人员是相对固定的。因此,分析运输车辆的行车数据即可反映驾驶员的对应驾驶行为。
二、实验仪器、设备和材料
硬件设备:PC机
软件环境:PyCharm Community Edition 2024.1、python3.12.4
三、实验内容
现有在某运输企业采集到的车辆驾驶行为指标数据.csv,里面有14个驾驶行为指标:
属性名称 |
说明 |
车辆编码 |
车牌的唯一编码,已脱敏 |
行驶里程(km) |
根据车辆设备编号的变化计算行驶里程,若设备号无变化,则当前阶段里程数=当前样本里程值-当前阶段里程起始值;若设备号变化,则将当前阶段里程数累加至总里程数中 |
平均速度(km/h) |
根据传感器记录的速度来计算平均速度,即求速度不为0时的速度均值 |
速度标准差 |
基于平均速度,计算每辆车的速度标准差 |
速度差值标准差 |
基于加速度,计算每辆车的速度差值标准差 |
急加速(次) |