DeepSeek 模型是近年来在自然语言处理(NLP)领域备受瞩目的开源大规模语言模型系列。其最新版本 DeepSeek-V3 采用了混合专家(Mixture-of-Experts,MoE)架构,拥有 6710 亿个参数,每个词元(token)激活 370 亿个参数。该模型在多项基准测试中表现出色,性能媲美 GPT-4 和 Claude 等领先的闭源模型。以下将详细介绍 DeepSeek 模型的架构、用途,并通过具体案例和源代码展示其应用。
模型架构与技术创新
DeepSeek-V3 的成功离不开其在模型架构和训练策略上的多项创新:
-
多头潜在注意力(Multi-Head Latent Attention,MLA):通过低秩联合压缩机制,减少推理过程中的键值缓存需求,提高了推理效率,同时保持性能不下降。
-
无辅助损失的负载均衡策略:采用动态调整路由偏置的方式,解决专家负载不均问题,避免因使用辅助损失而引发的性能退化。
-
多词元预测(Multi-Token Prediction,MTP)训练目标:相比传统的单词元预测,MTP 显著提升了模型在多个任务上的表现,并为推测性解码等推理优化提供了支持。
-
FP8 混合精度训练:支持 FP8