数学知识复习
一.函数与极限
1.函数
1.1 定义
函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作
其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。
函数的两要素是指函数的定义域和值域。
定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 xx 值的集合。
值域是函数中所有可能的输出值的集合。换句话说,值域是函数 f(x)f(x) 在定义域内所有可能的 yy 值的集合。
确定定义域和值域的方法
-
定义域:
-
代数方法:通过分析函数的表达式,确定哪些 xx 值使得函数有意义。例如,分母不能为零,对数函数的输入必须为正数,平方根的输入必须为非负数等。
-
图形方法:通过绘制函数的图形,观察 x 轴上的范围,确定定义域。
-
-
值域:
-
代数方法:通过分析函数的表达式,确定 f(x) 的取值范围。例如,平方函数的结果总是非负的,正弦函数的结果在 −1 和 1 之间。
-
图形方法:通过绘制函数的图形,观察 y 轴上的范围,确定值域。
-
常见函数类型
-
线性函数:
f(x)=ax+b其中 a 和 b 是常数。
-
多项式函数:
f(x)=a_{n}x^{n}+a_{n−1}x^{n−1}+⋯+a_{1}x+a_{0}其中 ai是常数。
-
指数函数:
f(x)=a^{x}其中 a>0 且 a≠1。
-
对数函数:
f(x)=log_{a}(x),其中 a>0 且 a≠1。 -
三角函数:如正弦函数 f(x)=sin(x),余弦函数 f(x)=cos(x),正切函数 f(x)=tan(x)等。
-
反三角函数:如反正弦函数 f(x)=arcsin(x),反余弦函数 f(x)=arccos(x),反正切函数 f(x)=arctan(x)等。
-
符号函数:
1.2函数的特性
1.2.1 有界性
上界:存在一个实数k1,使得
下界:存在一个实数k2,使得
有界:
一个函数 f(x) 在其定义域 D 上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:
m≤f(x)≤M
其中:
-
M 称为函数的上界。
-
m 称为函数的下界。
一个函数有界的充要条件:既有上界,又有下界。
分类
根据函数的有界性,可以分为以下几种情况:
-
有界函数:如果函数 f(x) 在其定义域 D 上既有上界又有下界,则称 f(x) 是有界函数。
-
无界函数:如果函数 f(x) 在其定义域 D 上没有上界或没有下界,则称 f(x) 是无界函数。
1.2.2 单调性
定义
一个函数 f(x) 在其定义域 D 上称为单调的,如果对于定义域中的任意 x1 和 x2,当 x1<x2 时,有:
-
单调递增:如果 f(x1)≤f(x2),则函数 f 是单调递增的。
-
严格单调递增:如果 f(x1)<f(x2),则函数 f 是严格单调递增的。
-
单调递减:如果 f(x1)≥f(x2),则函数 f 是单调递减的。
-
严格单调递减:如果 f(x1)>f(x2),则函数 f 是严格单调递减的。
1.2.3 奇偶性
定义
一个函数 f(x) 在其定义域 D 上称为:
-
偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。
-
奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。
1.2.4 周期性
定义
一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:
f(x+T)=f(x)
其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。
1.3 反函数
定义
给定一个函数 f:X→Y,如果存在一个函数 g:Y→X,使得对于 X 中的每一个 x,都有 g(f(x))=x,并且对于 Y 中的每一个 y,都有 f(g(y))=y,则称 g 为f 的反函数,记作
f^{-1}换句话说,反函数f^{−1}
满足以下两个条件:
-
对于 X 中的每一个x,有
f^{−1}(f(x))=x -
对于 Y 中的每一个 y,有
f(f^{−1}(y))=y
注意:原函数和反函数是关于y=x对称的。
存在条件
一个函数 f 存在反函数的充分必要条件是 f 是双射(即一一对应)。具体来说:
-
一一对应:对于 X 中的任意两个不同的元素 x1 和 x2,都有 f(x1)≠f(x2)。
-
满射:对于 Y 中的每一个元素 y,都存在 X 中的一个元素 x,使得 f(x)=y。
2.极限
2.1 数列极限
定义
一个数列 {an} 的极限是 L,如果对于任意给定的正数 ϵ,总存在一个正整数 N,使得对于所有 n>N,都有:
∣a_n−L∣<ϵ
换句话说,当 n 足够大时,数列的项 an可以无限接近L。此时,我们称数列 {an} 收敛于 L,记作:
如果数列不收敛于任何有限值,则称该数列为发散的。
理解:对于任意小的区间 ϵ,对于某个正整数N,使N后边的所有项n,∣an−L∣落在ϵ的这个区间内。
极限的性质
-
唯一性:如果数列 {an}收敛,则其极限是唯一的。
-
有界性:如果数列 {an}收敛,则它是有界的。
-
保序性:如果数列 {an} 和 {bn} 都收敛,且对于所有 n,都有 an≤bn,则
-
四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法
极限的判定
-
直接法:
-
通过分析数列的通项公式,直接计算其极限。
-
夹逼定理:
-
如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且
,则
2.2 函数的极限
**定义**
设函数 f(x) 在点 x=a 的某个**去心邻域**内有定义(在a处可以没有定义)。如果对于任意给定的正数 ϵ(无论它多么小),总存在正数 δ,使得当 0<∣x−a∣<δ 时,有
∣f(x)−L∣<ϵ
则称 L 为函数 f(x)当 x 趋近于 a 时的极限,记作
性质
-
唯一性:如果极限存在,那么它是唯一的。
-
局部有界性:如果
则存在M>0, δ>0,使得 f(x) 在 0<∣x−a∣<δ内有界,即
-
局部保号性:如果
且 L>0(或 L<0),则存在 δ>0,使得 f(x)>0(或 f(x)<0)在 0<∣x−a∣<δ内成立。
极限的计算
-
代入法:如果 f(x) 在 x=a 处连续,则
。
-
极限运算法则:如果
和
则
-
夹逼定理:如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且
,则
单侧极限
-
左极限:如果
,则称 L 为 f(x) 在 x 趋近于 a 时的左极限。
-
右极限:如果
,则称 L 为 f(x) 在 x 趋近于 a 时的右极限。
如果极限
存在,则左极限和右极限都存在且相等。
2.3 无穷大与无穷小
-
高阶无穷小
设 α和 β 是两个无穷小量(即当 x→a时, α→0且 β→0)。
如果
,则称 α是 β的高阶无穷小,记作 α=o(β)。即α的收敛速度比 β快。
如:
x^2比3x收敛速度快,则x^2是3x的高阶无穷小,记作
x^{2}=o(3x) -
低阶无穷小
设 α 和 β 是两个无穷小量。
如果
,则称 α 是 β 的低阶无穷小。
-
同阶无穷小
设 α 和 β 是两个无穷小量。
如果
,则称 α 和 β 是同阶无穷小。
-
等价无穷小
-
设 α 和 β 是两个无穷小量(即当 x→a 时, α→0且 β→0)。
-
如果
,则称 α 和 β 是等价无穷小,记作 α∼β。
-
-
k阶无穷小
-
设 α和 β 是两个无穷小量,且
-
如果
,则称 α 是 β 的 k 阶无穷小。
-
2.4 极限存在准则
2.4.1 单调有界准则
如果函数 f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。
补充:
洛必达法则:
假设 f(x) 和 g(x) 是两个函数,并且在某个点 a 的某个去心邻域内可导(即 f′(x)和 g′(x)存在),并且 g′(x)≠0在这个去心邻域内。如果:
-
,或者
-
,
那么:
如果右边的极限存在(或为无穷大),则左边的极限也存在(或为无穷大)。
2.4.2 夹逼定理
如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且
,则
3.函数的连续性
3.1 连续性
在某点的连续性:
设函数 f(x)在点 x=a的某个邻域内有定义。
如果
,则称函数 f(x) 在点 x=a 处连续。
归纳起来:
左连续:
设函数 f(x) 在点 x=a 的左侧有定义(即存在一个 δ>0,使得 (a−δ,a)内的所有 x 都有定义)。
如果
,则称函数 f(x) 在点 x=a处左连续。
右连续:
设函数 f(x) 在点 x=a 的右侧有定义(即存在一个 δ>0,使得 (a,a+δ)内的所有 x 都有定义)。
如果
,则称函数 f(x)在点 x=a 处右连续。
连续的充要条件
函数连续的充要条件:函数左右连续。
在区间的连续性:
如果函数 f(x) 在区间 (a,b) 内的每一点都连续,则称函数 f(x)在区间 (a,b) 内连续。
如果函数 f(x) 在区间 [a,b] 内的每一点都连续,并且在左端点 x=a 处右连续,在右端点 x=b 处左连续,则称函数 f(x) 在区间 [a,b] 上连续。
3.2 不连续点
定义
可去不连续点:
跳跃不连续点:
无穷不连续点:
3.3 闭区间连续函数性质
零点定理:(后边会用)
设函数 f(x) 在闭区间 [a,b]上连续,并且 f(a) 和 f(b) 异号(即 f(a)⋅f(b)<0),则存在 c∈(a,b) 使得 f(c)=0。
介值定理:(后边会用)
设函数 f(x) 在闭区间 [a,b] 上连续,并且 f(a)≠f(b)。对于任意介于 f(a)和 f(b)之间的数 k(即 min(f(a),f(b))<k<max(f(a),f(b))),存在 c∈(a,b) 使得 f(c)=k。
零点定理与介值定理的关系:
零点定理是介值定理的特例:
-
零点定理可以看作是介值定理在 k=0时的特例。
-
如果 f(a)和 f(b)异号,则 0 介于 f(a) 和 f(b)之间,因此存在 c∈(a,b) 使得 f(c)=0。
二.导数
1.概念
速度角度:
在物理学中,速度是描述物体位置随时间变化快慢的量。假设我们有一个函数 f(t1)表示物体在时间 t1 的位置,f(t2)表示物体在时间 t2的位置,那么在t1到t2时间段内,物体移动的距离为f(t2)-f(t1),平均速度为:
物体在t1的瞬时速度接近于:
也就是说当t2无限接近于t1时的速度。
切线角度
假设我们有一个函数 f(x),其图像是一条曲线。我们想要了解这条曲线在某一点 x=a 处的变化情况。
首先,考虑曲线上的两个点 (a,f(a)) 和 (b,f(b)),其中 b 是接近 a 的另一个点。连接这两个点的直线称为割线。割线的斜率可以表示为:
接下来,我们让点 b 逐渐接近点 a,即 b→a。在这个过程中,割线的斜率会逐渐接近曲线在点 (a,f(a))处的切线的斜率。
当 b 无限接近 a 时,割线的斜率就变成了曲线在点 (a,f(a))处的切线的斜率:
1.1 导数定义
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作
即:
其中:
-
Δx 是一个很小的增量,表示 x 的变化量。
-
f(x_{0} + Δx)是 x 在 x0 点增加 Δx 后的函数值。
-
f(x0) 是 x 在 x0 点的函数值。
-
是函数在 x=x0 处的平均变化率。
-
表示当 Δx 趋近于 0 时的极限。
-
平均变化率:在 x=x0 和 x=x0 + Δx 之间,函数的平均变化率是
。这个比值表示函数在这段区间内的平均变化速度。
-
瞬时变化率:当 Δx 趋近于 0 时,平均变化率的极限值就是函数在 x=x0处的瞬时变化率,即导数 f′(x0)。
1.2 单侧导数
导数的存在性
函数 f(x) 在点 x=a 处的导数 f′(a)存在,当且仅当左导数和右导数都存在且相等:
2.导数的几何意义
2.1 切线
由导数定义可知,f(x)在点 (a,f(a))处的斜率:
所以切线方程可以表示为:
y-f(a)=f′(a)(x-a)
其中:
-
y 是切线上的点的纵坐标。
-
f(a) 是函数在点 x=a 处的值。
-
f′(a) 是函数在点 x=a 处的导数,即切线的斜率。
-
x 是切线上的点的横坐标。
-
a 是切点处的横坐标。
化简切线方程:
y-f(a)=f′(a)(x-a)=>y=f'(a)x-af'(a)+f(a)
将切线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。
2.2 法线
是与切线垂直的直线。切线的斜率为f'(a),则法线的斜率为
法线方程的一般形式是:
其中:
-
y 是法线上的点的纵坐标。
-
f(a是函数在点 x=a处的值。
-
f′(a)是函数在点 x=a处的导数,即切线的斜率。
-
x 是法线上的点的横坐标。
-
a 是法线点处的横坐标。
化简法线方程: 将法线方程化简为标准形式 y=mx+b,其中 m 是斜率,b 是截距。
3.可导与连续的关系
3.1 定义
连续性
一个函数 f(x) 在点 x=a 处连续,如果满足以下条件:
这意味着当 x 接近 a 时,函数值 f(x)也接近 f(a)。换句话说,函数在点 x=a处没有跳跃或断裂。
可导性
一个函数 f(x) 在点 x=a处可导,如果它在该点处的导数存在,即:
这意味着函数在点 x=a 处的变化率是有限的,并且有一个确定的值。
所以从连续和可导定义看出,可导的条件比连续的条件更严格。
3.2 定理
1.可导性蕴含连续性
如果函数 f(x) 在点 x=a处可导,那么它在点 x=a 处连续。
2.连续性不一定蕴含可导性
反例:考虑函数 f(x)=∣x|在 x=0处是否可导。
4.求导公式
4.1 求导规则
-
常数规则:
其中 c 是常数。
-
幂函数规则:
其中 n 是任意实数。
-
常数倍规则:
其中 c 是常数。
-
和差规则:
-
乘积规则:
-
商规则:
其中 g(x)≠0。
-
链式法则(复合函数求导):
4.2 常见函数的求导公式
-
指数函数:
其中 a>0且 a≠1。
-
对数函数:
其中 a>0且 a≠1。
-
三角函数:
-
反三角函数:
5.高阶导数
高阶导数是指对函数进行多次求导得到的导数。具体来说,如果一个函数 f(x) 的一阶导数是 f′(x),那么二阶导数就是对一阶导数再求导,记作
。类似地,三阶导数是对二阶导数再求导,记作
定义
对于一个函数 f(x),其 n 阶导数定义为:
其中 n是正整数。
6.隐函数求导
隐式方程是指函数关系不是显式地表示为 y=f(x),而是表示为 F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出
隐函数求导的基本步骤
-
对方程两边求导:假设有一个隐式方程 F(x,y)=0,我们对方程两边分别对 x 求导。
-
使用链式法则:在求导过程中,如果遇到 y 的函数,需要使用链式法则,将 y 视为 x 的函数。
-
通过求导得到的方程,解出 dy/dx。
7.参数方程求导
参数方程是一种描述曲线的方法,其中曲线的 x 和 y 坐标分别由两个独立的参数方程表示。假设我们有一个参数方程:
其中 t 是参数。我们希望求出曲线的导数 dy/dx。
参数方程求导的基本步骤
-
求 x 对 t 的导数:
-
求 y对 t 的导数:
-
求 dy/dx:
三.微分
1.定义
微分是函数在某个变化过程中的改变量的线性主要部分。
若函数y=f(x)在点x处有导数f'(x)存在,则y因x的变化量△x所引起的改变量
△y=f(x+△x)-f(x)
可以表示为△y=f'(x)·△x+o(△x)
,其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,
微分dy可以近似地表示为dy=f'(x)△x,它描述了函数值y随自变量x变化而变化的线性部分。
2.可微的充要条件
函数 f(x) 在点 x=a 处可微的充要条件是:
-
函数在点 x=a处连续:
-
函数在点 x=a 处左右导数存在且相等:
简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。
3.微分公式与法则
根据微分定义
dy=f'(x)dx
可知,求微分实际上就是求导数,所以微分公式同求导公式,详见导数章节,这里不再赘述。
4.微分的几何意义
假设一个可微函数y=f(x)的曲线,在x=x0处增加一个非常小的改变量△x,那么:
△y=f(x_{0}+△x)-f(x_{0})
△y是函数增量的精确值,现在我们在x=x0处做函数的切线,根据微分定义可知:
dy=f'(x_{0})△x
f'(x)是切线的斜率,dy是△y的近似值,如上图所示,所以
所以微分提供了一种在局部范围内用直线近似曲线的方法,这对于理解和分析函数的行为非常有用。
5.微分中值定理
5.1 罗尔定理
如果函数 f(x)满足以下条件:
-
在闭区间 [a,b]上连续。
-
在开区间 (a,b)上可导。
-
在区间端点的函数值相等,即 f(a)=f(b)。
那么,在开区间 (a,b)内至少存在一点 c,使得:f′(c)=0
罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。
5.2 拉格朗日中值定理
如果函数 f(x)满足以下条件:
-
在闭区间 [a,b] 上连续。
-
在开区间 (a,b)上可导。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。
罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。
5.3 柯西中值定理
如果函数 f(x) 和 g(x) 满足以下条件:
-
在闭区间 [a,b]上连续。
-
在开区间 (a,b)上可导。
-
在开区间 (a,b) 内,g′(x)≠0。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。
5.4 洛必达法则
洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。
设函数 f(x)和 g(x 满足以下条件:
-
在点 a 的某个去心邻域内可导,且 g′(x)≠0。
如果
存在(或为无穷大),那么:
6.函数的单调性
函数的单调性可以通过其导数来判定:
-
递增函数: 如果函数 f(x)在区间 (a,b)上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≥0,则函数 f(x) 在区间 (a,b)上是递增的。如果 f′(x)>0,则函数 f(x)在区间 (a,b) 上是严格递增的。
-
递减函数: 如果函数 f(x)在区间 (a,b) 上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≤0,则函数 f(x) 在区间 (a,b) 上是递减的。如果 f′(x)<0,则函数 f(x) 在区间 (a,b)上是严格递减的。
7.函数的凹凸性
7.1 函数凹凸性判定
函数的凹凸性可以通过其二阶导数来判定:
-
凹函数: 如果函数 f(x) 在区间 (a,b) 上二阶可导,并且对于区间 (a,b) 内的任意 x,总有 f′′(x)≥0,则函数 f(x) 在区间 (a,b) 上是凹的。
-
凸函数: 如果函数 f(x) 在区间 (a,b)上二阶可导,并且对于区间 (a,b) 内的任意 xx,总有 f′′(x)≤0,则函数 f(x)在区间 (a,b) 上是凸的。
7.2 拐点
拐点是函数图像从凹变凸或从凸变凹的点。对于函数 f(x),如果 f′′(x)=0 且 f′′(x) 在 x 的两侧符号相反,则 x 是函数的拐点。
8.1 极值的充分必要条件
必要条件
如果函数 f(x) 在点 x=c 处取得局部极大值或局部极小值,并且 f(x) 在 x=c处可导,则 f′(c)=0。换句话说,极值点必须是函数的驻点。
充分条件
一阶导数判定法
-
局部极大值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)>0,在c 的右侧 f′(x)<0,则 x=c 是局部极大值。
-
局部极小值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)<0,在c 的右侧 f′(x)>0,则 x=c 是局部极小值。
二阶导数判定法
-
局部极大值: 如果 f′(c)=0,并且 f′′(c)<0,则 x=c 是局部极大值。
-
局部极小值: 如果 f′(c)=0,并且 f′′(c)>0,则 x=c 是局部极小值。
四.不定积分
1.定义
如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分
表示 f(x) 的所有原函数,通常写成:
其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。
不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。
2.基本积分公式
3.换元积分法
3.1 第一类换元积分法
-
选择合适的变量替换: 选择一个合适的变量替换 u=g(x),使得积分变得更简单。
-
求导数: 求 u 对 x 的导数
,并将其改写为
du=g′(x) dx -
替换积分变量: 将原积分中的 x 替换为 u,并将 dx 替换为
-
求解新积分: 求解新的积分
∫f(u) du -
回代变量: 将 u 回代为 g(x),得到最终的不定积分结果。
简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。
3.2 第二类换元积分法
第二类换元积分法通常涉及三角函数替换或带根号形式的替换。
-
选择合适的变量替换: 选择一个合适的变量替换 x=g(t),使得积分变得更简单。
-
求导数: 求 x 对 t 的导数
,并将其改写为
dx=g′(t) dt -
替换积分变量: 将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。
-
求解新积分: 求解新的积分
∫f(g(t))g′(t) dt -
回代变量: 将 t 回代为
,得到最终的不定积分结果。
简单理解就是将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。