题目描述
把 m 个同样的苹果放在 n 个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法。(5,1,15,1,1 和 1,1,51,1,5 是同一种方法)
输入格式
第一行是测试数据的数目 t,以下每行均包括二个整数 m 和 n,以空格分开。
输出格式
对输入的每组数据 m 和 n,用一行输出相应的结果。
#include<iostream>
using namespace std;
int dfs(int a, int b)
{
if (a == 1 || a == 0 || b == 1)
{
return 1;
}
else if (a < b)
{
return dfs(a, a);
}
else if (a >= b)
{
return dfs(a - b, b) + dfs(a, b - 1);
}
}
int main()
{
int num;
int a, b;
int sum[1000];
int count = 0;
cin >> num;
while (num--)
{
cin >> a >> b;
int res=dfs(a, b);
sum[count] = res;
count++;
}
for (int i = 0; i < count; i++)
{
cout << sum[i] << endl;
}
return 0;
}
对输入的a,b 分为三种情况考虑:
1 苹果数为1 或者 0 盘子数为1(盘子数不会为0,因为到1就返回了,但是苹果会) 返回 1
2苹果小于盘子数量 用苹果个数的盘子考虑即可
3苹果个数大于等于盘子个数,分两种情况考虑:放满盘子和不放满盘子,这样就包含了所有情况