LISA: 基于大语言模型的推理分割助手

LISA简介

LISA(Large Language Instructed Segmentation Assistant)是由香港中文大学和商汤科技联合开发的一个创新性图像分割模型。它继承了多模态大语言模型的语言生成能力,同时又具备生成分割掩码的能力,可以处理涉及复杂推理、世界知识、解释性回答和多轮对话的图像分割任务。

LISA的核心思想是将语言理解与视觉分割相结合,通过自然语言指令来引导模型完成精确的图像分割。这种方法使得LISA能够处理传统分割模型难以应对的复杂场景,如"分割出图中能让女性站得更高的物体"或"分割出更适合拍摄近距离物体的相机镜头"等需要推理的任务。

LISA示例图

LISA的主要特点

  1. 复杂推理能力: LISA可以理解并执行需要复杂推理的分割任务,如"分割出图中不寻常的部分"。

  2. 世界知识整合: 模型能够利用其内置的世界知识来完成任务,例如识别特定人物或物体。

  3. 解释性回答: LISA不仅能生成分割掩码,还能提供解释性的文字说明,阐述其分割决策的原因。

  4. 多轮对话支持: 模型支持多轮对话式交互,用户可以通过连续的问答来精炼分割结果。

  5. 零样本学习能力: 即使仅在非推理数据集上训练,LISA也展现出了强大的零样本推理分割能力。

  6. 微调效果显著: 在仅使用239对推理分割图像-指令对进行微调后,模型性能得到了进一步提升。

LISA的技术原理

LISA的核心架构基于多模态大语言模型(如LLaVA)和高性能图像分割模型(如SAM)的结合。它采用了以下关键技术:

  1. 多模态融合: 将语言理解和视觉分析能力融合在一个统一的框架中。

  2. 指令调优: 通过大量的图像-指令对训练,使模型能够理解并执行各种复杂的分割指令。

  3. 分割头设计: 在语言模型基础上增加专门的分割头,用于生成精确的像素级分割掩码。

  4. 推理机制: 设计了特殊的推理机制,使模型能够进行多步推理,处理复杂的分割任务。

  5. 知识蒸馏: 利用大语言模型的知识来增强分割模型的语义理解能力。

LISA的训练过程

LISA的训练过程包括以下几个主要步骤:

  1. 数据准备:

    • 语义分割数据集: ADE20K, COCO-Stuff, Mapillary等
    • 指代分割数据集: refCOCO, refCOCO+, refCOCOg等
    • 视觉问答数据集: LLaVA-Instruct-150k
    • 推理分割数据集: ReasonSeg(自建)
  2. 预训练模型准备:

    • 语言模型: 使用LLaVA系列模型
    • 视觉模型: 采用SAM ViT-H权重
  3. 训练流程:

    deepspeed --master_port=24999 train_ds.py \
      --version="PATH_TO_LLaVA" \
      --dataset_dir='./dataset' \
      --vision_pretrained="PATH_TO_SAM" \
      --dataset="sem_seg||refer_seg||vqa||reason_seg" \
      --sample_rates="9,3,3,1" \
      --exp_name="lisa-7b"
    
  4. LoRA权重合并: 训练完成后,需要将LoRA权重与基础模型合并,生成完整的LISA模型。

  5. 验证与评估: 使用专门的验证集评估模型性能,确保模型在各种任务上都达到预期效果。

LISA的应用场景

LISA的强大能力使其在多个领域都有潜在的应用价值:

  1. 医疗影像分析: 可以根据医生的自然语言描述,精确分割出病变区域。

  2. 自动驾驶: 能够理解复杂的道路场景,分割出特定的交通元素。

  3. 遥感图像处理: 可以根据需求分割出特定地理特征或人造建筑。

  4. 工业质检: 通过自然语言指令识别产品缺陷或异常区域。

  5. 视频编辑: 为视频编辑软件提供智能分割功能,简化后期制作流程。

  6. 增强现实: 为AR应用提供更精确的场景理解和物体分割能力。

  7. 机器人视觉: 提升机器人对复杂环境的理解和交互能力。

LISA的实际使用

要使用LISA进行推理,可以按以下步骤操作:

  1. 安装必要的依赖:

    pip install -r requirements.txt
    pip install flash-attn --no-build-isolation
    
  2. 下载预训练模型:

  3. 运行推理脚本:

    CUDA_VISIBLE_DEVICES=0 python chat.py --version='xinlai/LISA-13B-llama2-v1'
    
  4. 输入文本提示和图像路径,例如:

    - Please input your prompt: Where can the driver see the car speed in this image? Please output segmentation mask.
    - Please input the image path: imgs/example1.jpg
    
  5. LISA将生成分割掩码并提供解释性文字。

对于本地部署,可以使用以下命令启动Web界面:

CUDA_VISIBLE_DEVICES=0 python app.py --version='xinlai/LISA-13B-llama2-v1 --load_in_4bit'

LISA的未来发展

尽管LISA已经展现出了强大的能力,但研究团队仍在持续改进和扩展其功能:

  1. 模型规模扩展: 探索更大规模模型的潜力,以进一步提升性能。

  2. 多语言支持: 扩展LISA以支持更多语言的指令和回答。

  3. 实时处理: 优化推理速度,使LISA能够在实时应用中使用。

  4. 跨模态学习: 增强LISA在视频、音频等其他模态上的能力。

  5. 可解释性研究: 深入研究模型的决策过程,提高其可解释性。

  6. 领域适应: 开发针对特定领域(如医疗、地理信息系统)的专用版本。

  7. 与其他AI技术集成: 探索与强化学习、图神经网络等技术的结合。

结论

LISA代表了计算机视觉和自然语言处理融合的一个重要里程碑。它不仅提高了图像分割的灵活性和精度,还为人机交互提供了更自然、更直观的方式。随着技术的不断进步,我们可以期待LISA及类似模型在各个领域带来更多创新应用,推动人工智能向着更智能、更易用的方向发展。

LISA项目的开源不仅为研究人员提供了宝贵的资源,也为整个AI社区带来了新的机遇。我们鼓励更多的开发者和研究者参与到LISA的改进和应用中来,共同推动这一激动人心的技术领域的发展。

文章链接:www.dongaigc.com/a/lisa-reasoning-segmentation-helper
https://www.dongaigc.com/a/lisa-reasoning-segmentation-helper

https://www.dongaigc.com/p/dvlab-research/LISA

www.dongaigc.com/p/dvlab-research/LISA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值