【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)

目录

一、引言 

二、零样本物体检测(zero-shot-object-detection)

2.1 概述

2.2 技术原理

2.3 应用场景

2.4.1 pipeline对象实例化参数

2.4.2 pipeline对象使用参数 

2.4 pipeline实战

2.5 模型排名

三、总结


一、引言 

 pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍CV计算机视觉的第八篇,零样本物体检测(zero-shot-object-detection),在huggingface库内有36个零样本图像分类模型。

二、零样本物体检测(zero-shot-object-detection)

2.1 概述

零样本物体检测是一项计算机视觉任务,用于在图像中检测物体及其类别,而无需任何事先训练或类别知识。零样本物体检测模型接收图像作为输入,以及候选类别列表,并输出检测到物体的边界框和标签。

2.2 技术原理

比较典型的模型是google发布的owlvit-base-patch32,OWL-ViT 使用 CLIP 作为其多模态主干,使用类似 ViT 的 Transformer 获取视觉特征,使用因果语言模型获取文本特征。为了使用 CLIP 进行检测,OWL-ViT 删除了视觉模型的最终标记池层,并将轻量级分类和框头附加到每个 Transformer 输出标记。通过将固定分类层权重替换为从文本模型获得的类名嵌入,可以实现开放词汇分类。作者首先从头开始训练 CLIP,然后使用二分匹配损失在标准检测数据集上对分类和框头进行端到端微调。每个图像可以使用一个或多个文本查询来执行零样本文本条件对象检测。

2.3 应用场景

  • 野生动物保护:可以识别未预先训练的稀有或新发现的物种,帮助研究人员监控和保护生物多样性。
  • 智能监控和安全:在未知的威胁或异常行为检测中,系统能识别新的、未见过的可疑物体或行为,增强安全响应能力。
  • 零售与库存管理:在零售环境中,快速适应新商品的上架,无需重新训练模型即可识别和分类。
  • 自动驾驶汽车:识别道路上的新物体,如临时交通标志或新型号车辆,提高自动驾驶的安全性。
  • 医疗影像分析:帮助医生识别罕见病症的影像特征,尤其是在初期诊断时,零样本学习能快速识别新出现的病征。

2.4 pipeline参数

2.4.1 pipeline对象实例化参数

  • modelPreTrainedModelTFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
  • image_processor ( BaseImageProcessor ) — 管道将使用的图像处理器来为模型编码数据。此对象继承自 BaseImageProcessor
  • modelcardstrModelCard可选)— 属于此管道模型的模型卡。
  • frameworkstr可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。
  • taskstr,默认为"")— 管道的任务标识符。
  • num_workersint可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。
  • batch_sizeint可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理
  • args_parserArgumentHandler可选) - 引用负责解析提供的管道参数的对象。
  • deviceint可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.devicestr
  • torch_dtypestrtorch.dtype可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto"
  • binary_outputbool可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。

2.4.2 pipeline对象使用参数 

  • imagestrList[str]PIL.ImageList[PIL.Image]——管道处理三种类型的图像:
    • 包含指向图像的 http 链接的字符串
    • 包含图像本地路径的字符串
    • 直接在 PIL 中加载的图像
  • candidates_labels ( List[str]) — 该图像的候选标签
  • hypothesis_templatestr可选,默认为)— 与候选标签"This is a photo of {}"结合使用的句子,通过用候选标签替换占位符来尝试图像分类。然后使用 logits_per_image 估计可能性
  • timeout可选float,默认为 None)— 等待从网络获取图像的最长时间(以秒为单位)。如果为 None,则不设置超时,并且调用可能会永远阻塞。

2.5 pipeline实战

分别采用google/owlvit-base-patch32和google/owlv2-base-patch16-ensemble对该图片进行分类

采用pipeline代码如下

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
from transformers import pipeline


detector = pipeline(model="google/owlvit-base-patch32", task="zero-shot-object-detection")
output=detector(
    "http://images.cocodataset.org/val2017/000000039769.jpg",
    candidate_labels=["cat", "couch"],
)
print(output)


detector = pipeline(model="google/owlv2-base-patch16-ensemble", task="zero-shot-object-detection")
output=detector(
    "http://images.cocodataset.org/val2017/000000039769.jpg",
    candidate_labels=["head", "bird"],
)
print(output)

执行后,自动下载模型文件并进行识别:

2.6 模型排名

在huggingface上,我们将零样本物体检测(zero-shot-object-detection)模型按下载量从高到低排序,总计36个模型,前10仅有google和IDEA-Research发布的模型,可能在物体检测方面,多数情况用不到zero-shot吧。

三、总结

本文对transformers之pipeline的零样本物体检测(zero-shot-object-detection)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的零样本物体检测(zero-shot-object-detection)模型。

期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:

《Transformers-Pipeline概述》

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

《Transformers-Pipeline 第一章:音频(Audio)篇》

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)

【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)

《Transformers-Pipeline 第二章:计算机视觉(CV)篇》

【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)

【人工智能】Transformers之Pipeline(六):图像分类(image-classification)

【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)

【人工智能】Transformers之Pipeline(八):图生图(image-to-image)

【人工智能】Transformers之Pipeline(九):物体检测(object-detection)

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)

【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)​​​​​​​

《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》

【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)

【人工智能】Transformers之Pipeline(十四):问答(question-answering)

【人工智能】Transformers之Pipeline(十五):总结(summarization)

【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)

【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)

【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)

【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)

【人工智能】Transformers之Pipeline(二十一):翻译(translation)

【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)

《Transformers-Pipeline 第四章:多模态(Multimodal)篇》

【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)

【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)

【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)

【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)

【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)

【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)

### Zero-Shot 学习的概念 Zero-shot 学习是一种机器学习范式,在这种模式下,模型能够识别并分类未曾见过的数据类别。这意味着即使在训练过程中从未接触过某些类别的数据,该模型也能够在推理阶段正确处理这些新类别[^1]。 对于自然语言处理领域而言,zero-shot 能力尤为重要。通过预训练大规模语料库上的通用特征表示,使得模型具备理解未见文本的能力。例如,当给定一个新的任务描述时,无需额外标注即可完成相应的工作流[^3]。 ### 应用实例 #### 文本分类 假设有一个用于情感分析的任务,其中包含了正面评价和负面评价两类标签;而测试集中出现了中立态度这一全新类别。如果采用传统的监督式算法,则无法直接应对这种情况。但是借助 zero-shot 技术的支持,可以利用已有的知识迁移来预测未知的情感倾向。 ```python from transformers import pipeline classifier = pipeline('sentiment-analysis', model='nlptown/bert-base-multilingual-uncased-sentiment') result = classifier(['I love this product!', 'This is terrible.', 'It just works fine.']) print(result) ``` 此代码片段展示了如何使用 Hugging Face Transformers 库加载一个支持多语言的 BERT 模型来进行 sentiment analysis,并且它天然具有一定的 zero-shot 性能,即可以在未经特定微调的情况下对新的输入做出合理的判断。 #### 图像识别 除了 NLP 领域外,计算机视觉同样受益匪浅。比如 ImageNet 数据集上训练得到的对象检测网络可能被用来辨识不在原始数据库内的物体种类——只要提供适当的文字说明作为提示词(prompt),那么即便是在缺乏对应图像样本的前提下也能实现较为准确的结果推断[^2]。 ### 原理剖析 为了使模型获得 zero-shot 的能力,通常会采取两种主要策略: - **基于属性的方法**:构建一个映射函数,将不同对象转换成一组共享特性向量空间中的点位坐标。这样一来,即使是之前没见过的新事物也可以依据其固有特点找到最接近的位置从而作出合理推测。 - **跨模态关联建模**:让神经架构学会捕捉多种感官信息之间的内在联系规律,如文字与图片间的相互关系等。这样做的好处在于一旦掌握了某种表达形式下的概念定义之后便很容易推广至其他表现形态之上。
评论 108
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值