Lasso回归完整指南
一、理论基础
1. 基本概念
Lasso(Least Absolute Shrinkage and Selection Operator)回归是一种线性回归方法,它使用L1正则化。与岭回归使用的L2正则化不同,Lasso回归的一个重要特点是可以实现特征选择。
2. 数学原理
Lasso回归的目标函数:
min J(β) = ||y - Xβ||² + α||β||₁
其中:
- 第一项
||y - Xβ||²
是普通最小二乘法的损失函数 - 第二项
α||β||₁
是L1正则化项(参数的绝对值之和) - α 是正则化强度参数
3. 与其他回归方法的比较
特性 | 普通线性回归 | 岭回归 | Lasso回归 |
---|---|---|---|
正则化类型 | 无 | L2 | L1 |
特征选择 | 无 |