Lasso回归完整指南

Lasso回归完整指南

一、理论基础

1. 基本概念

Lasso(Least Absolute Shrinkage and Selection Operator)回归是一种线性回归方法,它使用L1正则化。与岭回归使用的L2正则化不同,Lasso回归的一个重要特点是可以实现特征选择。

2. 数学原理

Lasso回归的目标函数:

min J(β) = ||y - Xβ||² + α||β||₁

其中:

  • 第一项 ||y - Xβ||² 是普通最小二乘法的损失函数
  • 第二项 α||β||₁ 是L1正则化项(参数的绝对值之和)
  • α 是正则化强度参数

3. 与其他回归方法的比较

特性 普通线性回归 岭回归 Lasso回归
正则化类型 L2 L1
特征选择
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值