贝叶斯时间序列模型的实现与比较
1. 引言
时间序列预测在金融、经济、气象等众多领域都有着广泛的应用。传统的时间序列分析方法往往基于频率派统计,而贝叶斯方法通过引入先验知识和不确定性估计,为时间序列建模提供了新的视角。本文将介绍并比较三种主要的贝叶斯时间序列模型:贝叶斯结构时间序列模型(BSTS)、动态贝叶斯网络(DBN)和贝叶斯向量自回归模型(BVAR)。
1.1 研究背景与意义
随着数据量的增加和计算能力的提升,贝叶斯方法在时间序列分析中的应用日益广泛。贝叶斯方法的主要优势在于:
- 能够自然地处理参数不确定性
- 可以融入领域专家知识
- 提供预测的概率分布而非点估计
- 具有良好的可解释性
1.2 研究内容
本文主要内容包括:
- 三种贝叶斯时间序列模型的理论基础
- 模型的Python实现
- 在模拟数据上的实验比较
- 预测效果的定量与定性分析
2. 理论基础
2.1 贝叶斯结构时间序列模型(BSTS)
BSTS模型将时间序列分解为多个可解释的组件,主要包括:
-
趋势组件