智能制造未来研究与应用方向解读
1. 智能制造转型面临的关键问题
在当今时代,企业面临着智能制造(IM)转型与升级的重要挑战。以下几个关键问题对于企业成为行业领导者至关重要:
- 如何通过IM商业模式的转型成为行业领导者?
- 怎样通过流程创新提高产品和服务的附加值?
- 如何整合下一代人工智能、5G通信技术、区块链和3D打印技术,形成强大的核心技术竞争力?
- 怎样利用互联网、大数据和人工智能观察和判断市场趋势?
这些问题的解决将直接影响企业在智能制造领域的发展和竞争力。
2. 智能制造未来技术趋势
2.1 新一代人工智能
2017年7月8日,国务院发布了新一代人工智能发展规划。新一代人工智能由大数据驱动,通过给定的学习框架,根据当前设置和环境信息不断修改和更新参数,具有高度的自主性。人工智能的发展进入了新阶段,呈现出深度学习、跨媒体融合、人机协作、群体智能和自主控制等特点。新一代人工智能的五个技术系统如下:
2.1.1 深度学习和大数据驱动
深度学习和大数据智能是最新一波人工智能的技术基础。深度学习是将深度神经网络技术应用于解决问题,由于其多隐藏层的非线性神经网络,具有强大的学习能力和逼近任意函数的能力。深度学习可以基于大数据或小数据,但与大数据结合时,能获得更好描述大数据内部逻辑的信息,产生1 + 1 > 2的效果。它在图像识别、机器视觉、语音处理等应用中表现出色,适合使用GPU进行并行计算。大数据智能理论的研究重点是突破无监督学习和综合深度推理等难题,建立以自然语言理解为核心的数据驱动认知计算模型,形成从大数据到知识、从知识到决策的能力
订阅专栏 解锁全文
1278

被折叠的 条评论
为什么被折叠?



