1.点积
1.1 点积的定义
点积又叫内积、数量积(因为点积结果是一个数值标量)。
给定两个矢量a = [a1, a2,…,an]和b = [b1,b2,…,bn]的点积定义为:
1.2 点积的几何解释
欧几里得空间中a · b = |a| · |b| · cosθ,图示意如下:
1.3 点积的应用
用点积可以判断两个向量之间夹角是否大于90度,在3D游戏中就可以依此判断多边形是否背向摄像机。在2D游戏中通过将连接人物目标点与当前点的向量与人物矢量速度做点积,来判断人物是否抵达目的地。
2.叉积
2.1 叉积的定义
叉积又叫外积、向量积(因为叉积的结果是一个向量)。
三维坐标系中,a = (x1,y1,z1),b = (x2,y2,z2),则a×b=(y1·z2 - z1·y2, z1·x2 - x1·z2, x1·y2 - y1·x2)。
2.2 叉积的几何解释
三维坐标系中,a×b=|a|·|b|·sinθ·n,n是与向量a、b垂直的单位向量,其方向按右手法则取得,如下图所示:
叉积所得向量的模可以解释成以a、b为边的平行四边形的面积,因为|a×b|=|a|·|b|·sinθ。
2.3 叉积的应用
叉积可以用于计算3D世界中的法向量。