点积与叉积

1.点积

1.1 点积的定义

点积又叫内积、数量积(因为点积结果是一个数值标量)。

给定两个矢量a = [a1, a2,…,an]和b = [b1,b2,…,bn]的点积定义为:

1.2 点积的几何解释

欧几里得空间中a · b = |a| · |b| · cosθ,图示意如下:

 

1.3 点积的应用

用点积可以判断两个向量之间夹角是否大于90度,在3D游戏中就可以依此判断多边形是否背向摄像机。在2D游戏中通过将连接人物目标点与当前点的向量与人物矢量速度做点积,来判断人物是否抵达目的地。


2.叉积

2.1 叉积的定义

叉积又叫外积、向量积(因为叉积的结果是一个向量)。

三维坐标系中,a = (x1,y1,z1),b = (x2,y2,z2),则a×b=(y1·z2 - z1·y2, z1·x2 - x1·z2, x1·y2 - y1·x2)。

2.2 叉积的几何解释

三维坐标系中,a×b=|a|·|b|·sinθ·n,n是与向量a、b垂直的单位向量,其方向按右手法则取得,如下图所示:


叉积所得向量的模可以解释成以a、b为边的平行四边形的面积,因为|a×b|=|a|·|b|·sinθ。

2.3 叉积的应用

叉积可以用于计算3D世界中的法向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值