网络视频直播系统的发展历程

前面几篇文章中,我们一直在讲关于网络视频直播系统的搭建步骤及开发问题等。对于刚刚踏足直播领域、想在视频直播开发上进行投资的朋友们而言,如果要在日后运营视频直播平台,势必要明确直播行业现在的市场环境、直播产品属性,且要找好用户定位。那么了解网络视频直播系统的发展历程也是必不可少的,下面就随小编一起来看看。

从直播行业兴起到现在,大体分为五个阶段:

一、PC端秀场直播时代
从2005年开始,各大视频网站展开流量大战。其中六间房、9158,以美女主播为卖点,发展起秀场直播聊天室。而YY从语音软件进军秀场直播领域,开创了公会模式下的网红流水线。2010年,六间房转型为签约主播的秀场模式。那个时代的末尾,尽管智能手机逐渐走向普及,4G也在萌芽,但大部分用户的碎片化时间还集中在PC端。

二、游戏直播时代
2014年,YY剥离游戏直播业务成立虎牙直播,斗鱼直播从Acfun独立出来。2015年,龙珠和熊猫直播通过抢占赛事资源、挖掘人气主播等方式快速抢占市场。那为何把这个阶段单独分成“游戏时代”呢?一是因为此阶段的电竞赛事频繁,二是相比起其他领域的直播来讲,游戏直播的用户粘性更高,而且游戏直播的时效性和观赏性更加优秀。不过这个阶段,随着手机直播的萌芽,PC端的用户已经呈下降趋势,更多的用户流向了以手机为主的移动平台。

三、移动直播时代
2015年末,映客、花椒、易直播等手机平台的加入,使得网络视频直播系统的应用场景更加多元化。技术瓶颈的打破,不再使游戏直播“一家独大”,也让泛娱乐领域也加入了直播,且逐渐成为了发展趋势。这样的创新意味商业模式在扩宽,盈利模式也发生了改变。

四、VR直播时代
这个时代的存在时间比较短,属于“昙花一现”时代。VR技术的兴起,让直播行业也趁机插了一脚。以微鲸科技为代表,力推VR体育直播,同年以花椒直播为代表,在北京某次车展直播中,融入了VR技术。虽然VR直播的优点比较明显:拥有沉浸式式体验,可以提升用户兴趣,提高互动效果。但短板也同样突出:一是无论是在开发还是在使用上,技术成本比较高;二是有部分用户无法适应VR技术可能带有的“眩晕感”,而且这部分用户的量级还不能忽视。所以VR直播最终没能普及。

五、“直播+”时代
这个时代也是现在我们所处的时代,网络视频直播系统进入全新发展环节,除了传统直播行业外,以快手为代表的短视频平台开始发展起直播业务;游戏直播领域开始大力发展虚拟主播和“云游戏”业务,用于进一步提高用户粘性;一对一直播的兴起,为越来越多的直播用户提供了私密空间,也使主播的入驻门槛更低,还让更多的行业看到了额外的道路(一对一心理辅导、一对一财经直播间等)。可谓真正的百花齐放,这也是未来网络视频直播系统的重点发展方向。

文章来源:安卓巴士官网

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值