算法导论 3.2-7 共轭数

用归纳法证明:第i个斐波那契数满足等式

{\color{Red} F_{i}=\frac{\phi ^{i}-\varphi ^{i}}{\sqrt{5}}}

其中{\color{Red} \phi}是黄金分割率且{\color{Red} \varphi}是其共轭数。

解答:

根据归纳法,当i=1时,对于\frac{\phi -\varphi }{\sqrt{5}},其中\phi -\varphi =\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}=\sqrt{5},可得\frac{\phi -\varphi }{\sqrt{5}}=\frac{\sqrt{5}}{\sqrt{5}}=1=F_{1},所以当i=1时命题成立。

当i=2时,有\frac{\phi ^{2}-\varphi ^{2}}{\sqrt{5}}=1=F_{2},所以当i=2时命题也成立

假设已知当i=n及i=n-1时(n>=2)时命题成立,所以有F_{n}=\frac{\phi ^{n}-\varphi ^{n}}{\sqrt{5}},以及F_{n-1}=\frac{\phi ^{n-1}-\varphi ^{n-1}}{\sqrt{5}}, 由此可得

F_{n}+F_{n-1}=\frac{\phi ^{n}-\varphi ^{n}}{\sqrt{5}}+\frac{\phi ^{n-1}-\varphi ^{n-1}}{\sqrt{5}}=\frac{\phi ^{n}+\phi ^{n-1}-(\varphi ^{n}+\varphi ^{n-1})}{\sqrt{5}}

由于\phi\varphi都满足x=x^{2}+1,可以得出\phi ^{n}+\phi ^{n-1}=\phi ^{n-1}(\phi +1)=\phi ^{n-1}\phi ^{2}=\phi ^{n+1}

同理可得\varphi ^{n}+\varphi ^{n-1}=\varphi ^{n+1},那么可以得出F_{n+1}=F_{n}+F_{n-1}=\frac{\phi ^{n+1}-\varphi ^{n+1}}{\sqrt{5}}

故证明成立。

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值