第四章-随机变量的概念


4.1 引言

4.1.1 随机变量

通俗定义

随机变量是赋予实验的每一个结果 ξ \xi ξ。这个数字可以是机会游戏中的收益,随机电源中的电压。

给定一个实验,实验的空间为 S S S S S S的子集构成的域称作事件,并赋予这些事件以概率。对于实验的每个结果 ξ \xi ξ都指定一个数 x ( ξ ) \bm{x}(\xi) x(ξ)。则构建了一个定义在集合 S S S上的函数 x \bm{x} x,它的值域为一个数集。若函数 x \bm{x} x满足某些不太苛刻的条件,则称函数 x \bm{x} x随机变量

用随机变量表示事件

重要问题:随机变量 x \bf{x} x小于给定的数 x x x,或处于数 x 1 x_1 x1 x 2 x_2 x2之间的概率是多少?例如,若随机变量是身高,我们想得出某些界限的概率。下面,从符号的角度来陈述。
{ x ≤ x } \{\bm{x} \leq x \} {xx} 该符号表示 S S S的一个子集,由满足 x ( ξ ) ≤ x \bm{x}(\xi) \leq x x(ξ)x的所有结果构成。
通过下表的例子说明它的详细含义:给定任意 x x x,所有不大于等于 x x x的数 x ( ξ ) \bm{x}(\xi) x(ξ)构成,即, { x ≤ 35 } = { 10 , 20 , 30 } , \{\bm{x} \leq 35 \} = \{ 10,20,30 \}, {x35}={10,20,30},即当 i = 1 , 2 , 3 i=1,2,3 i=1,2,3时, x ( f i ) ≤ 35 \bm{x}(f_i) \leq 35 x(fi)35

ξ \xi ξ x ( ξ ) \bm{x}(\xi) x(ξ)
f 1 f_1 f1 10 10 10
f 2 f_2 f2 20 20 20
f 3 f_3 f3 30 30 30
f 4 f_4 f4 40 40 40
f 5 f_5 f5 50 50 50
f 6 f_6 f6 60 60 60

同样地, { x 1 ≤ x ≤ x 2 } , \{ x_1 \leq \bm{x} \leq x_2 \}, {x1xx2}, 也表示 S S S的一个子集,它由所有满足 x 1 ≤ x ≤ x 2 x_1 \leq \bm{x} \leq x_2 x1xx2的结果 ξ \xi ξ构成。

而符号 { x = x } , \{ \bm{x} = x \}, {x=x}, 是满足 x ( ξ ) = x \bm{x}(\xi) = x x(ξ)=x S S S的子集。

给定 R R R x x x轴上的实数集合,则
{ x ∈ R } , \{x \in R \}, {xR}, 表示满足 x ( ξ ) ∈ R \bm{x}(\xi) \in R x(ξ)R ξ \xi ξ构成的 S S S的子集。

具体定义

随机变量 x \bm{x} x是对每个结果 ξ \xi ξ指定一个数 x ( ξ ) \bm{x}(\xi) x(ξ)的过程。产生的函数需满足:

  1. 对每个 x x x,集合 { x ≤ x } \{\bm{x} \leq x\} {xx}是一个事件。
  2. 事件 { x = ∞ } \{x=\infty\} {x=}和事件 { x = − ∞ } \{x=-\infty\} {x=}的概率等于零。即
    P { x = ∞ } = 0 , P { x = − ∞ } = 0. P\{x=\infty\} = 0 , \quad P\{x=-\infty\} = 0 . P{x=}=0,P{x=}=0.
    第二个条件表明,一些结果随允许 x x x ∞ \infty − ∞ -\infty ,但要求这些结果构成的集合为零概率。

注意:一个复随机变量 z z z
z = x + j y , \bm{z} = \bm{x} + j \bm{y}, z=x+jy,
式中 x \bm{x} x y \bm{y} y都是实随机变量。


4.2 分布函数和密度函数

在集合 S S S中,组成事件 { x ≤ x } \{\mathbf{x} \leq x \} {xx}的元素随 x x x取值不同而变化。因此,事件 { x ≤ x } \{\bm{x} \leq x\} {xx}的概率 P { x ≤ x } P\{\bm{x} \leq x\} P{xx}依赖于 x x x的一个数。这个数表示为 F x ( x ) F_x(x) Fx(x),并称它为随机变量 x \bm{x} x的(累积)分布函数

定义

随机变量 x \bm{x} x的分布函数
F x ( x ) = P { x ≤ x } F_x(x) = P\{\bm{x} \leq x\} Fx(x)=P{xx} 是定义在从 − ∞ -\infty ∞ \infty 上的函数。

通常来说,随机变量 x \bm{x} x, y \bm{y} y z \bm{z} z分别用 F x ( x ) F_x(x) Fx(x) F y ( y ) F_y(y) Fy(y) F z ( z ) F_z(z) Fz(z)来表示。

例子 4-3 在抛硬币实验中,定义正面 ( h ) (h) (h)的概率为 p p p,反面 ( t ) (t) (t)概率为 q q q,我们定义 x \bm{x} x满足
x ( h ) = 1 ,    x ( t ) = 0 , \bm{x}(h) = 1,~~ \bm{x}(t) = 0, x(h)=1,  x(t)=0, 求该随机变量的分布函数F(x),其中 x ∈ ( − ∞ , ∞ ) x\in (-\infty,\infty) x(,)
如下图所示:

  1. x ≥ 1 x \geq 1 x1,则 x ( h ) = 1 ≤ x \bm{x}(h)=1 \leq x x(h)=1x x ( t ) = 0 ≤ x \bm{x}(t)=0 \leq x x(t)=0x。因此,
    F ( x ) = P { x ≤ x } = P { h , t } = p + q = 1 , x ≥ 1. F(x) = P\{\bm{x} \leq x \}=P\{ h, t \} = p + q = 1, \quad x \geq 1. F(x)=P{xx}=P{h,t}=p+q=1,x1.
  2. 0 ≤ x < 1 0 \leq x <1 0x<1,则 x ( h ) = 1 > x \bm{x}(h)=1 > x x(h)=1>x x ( t ) = 0 ≤ x \bm{x}(t)=0 \leq x x(t)=0x。因此,
    F ( x ) = P { x ≤ x } = P { h , t } = q , 0 ≤ x < 1. F(x) = P\{\bm{x} \leq x \}=P\{ h, t \} = q , \quad 0 \leq x <1. F(x)=P{xx}=P{h,t}=q,0x<1.
  3. x < 0 x < 0 x<0,则 x ( h ) = 1 > x \bm{x}(h)=1 > x x(h)=1>x x ( t ) = 0 > x \bm{x}(t)=0 > x x(t)=0>x。因此,
    F ( x ) = P { x ≤ x } = P { ∅ } = 0 , x > 0. F(x) = P\{\bm{x} \leq x \}=P\{ \empty \} = 0 , \quad x >0. F(x)=P{xx}=P{}=0,x>0.

在这里插入图片描述
例子 4-4 在抛色子中,设随机变量 x ( f i ) = 10 i \bm{x}(f_i) = 10i x(fi)=10i。若骰子均匀的,则 x \bm{x} x的分布函数是下图所示的阶梯函数。

F ( 100 ) = P { x ≤ 100 } = P { S } = 1 F(100) = P\{\bm{x} \leq 100\} = P\{S\} = 1 F(100)=P{x100}=P{S}=1
F ( 35 ) = P { x ≤ 35 } = P { f 1 , f 2 , f 3 } = 3 6 F(35) = P\{\bm{x} \leq 35\} = P\{f_1,f_2,f_3\} = \frac{3}{6} F(35)=P{x35}=P{f1,f2,f3}=63

在这里插入图片描述
注意:复随机变量 z = x + j y \bm{z} = \bm{x} + j\bm{y} z=x+jy没有分布函数,因为 x + j y ≤ x + j y \bm{x} + j\bm{y} \leq x + jy x+jyx+jy是没有意义。

分位点

一个随机变量 x \bm{x} x u u u分位点是满足 u = P { x ≤ x u } = F ( x u ) , u=P\{ \bm{x} \leq x_u \} = F(x_u), u=P{xxu}=F(xu), 的最小的实数 x u x_u xu
因此, x u x_u xu可以看作函数 u = F ( x ) u=F(x) u=F(x)的逆函数。这个函数的值域是 0 ≤ u ≤ 1 0 \leq u \leq 1 0u1,函数取值范围是 x x x轴。

4.2.1 分布函数的性质

在下面,表示式 F ( x + ) F(x^+) F(x+) F ( x − ) F(x^-) F(x)分别表示函数 F ( x ) F(x) F(x) x x x点的右极限和左极限,即,
F ( x + ) = lim ⁡ F ( x + ε ) , F ( x − ) = lim ⁡ F ( x − ε ) , 0 < ε → 0. F(x^+) = \lim F(x+\varepsilon), \quad F(x^-) = \lim F(x - \varepsilon), 0< \varepsilon \rightarrow 0. F(x+)=limF(x+ε),F(x)=limF(xε)0<ε0.

分布函数具有以下的性质:

  1. F ( + ∞ ) = 1 F ( − ∞ ) = 0 F(+\infty) =1 \quad F(-\infty) =0 F(+)=1F()=0
    F ( + ∞ ) = P { x ≤ + ∞ } = P { S } = 1 F(+\infty) = P\{ \bm{x} \leq +\infty \} = P\{S\} = 1 F(+)=P{x+}=P{S}=1 F ( − ∞ ) = P { x ≤ − ∞ } = P { ∅ } = 0 F(-\infty) = P\{ \bm{x} \leq -\infty \} = P\{\empty\} = 0 F()=P{x}=P{}=0
  2. 它是 x x x的非降函数,即 x 1 < x 2 , 则 有 F ( x 1 ) ≤ F ( x 2 ) . x_1<x_2,\quad 则有F(x_1) \leq F(x_2). x1<x2,F(x1)F(x2).
  3. 如果 F ( x 0 ) = 0 F(x_0) = 0 F(x0)=0,则对于 x ≤ x 0 x \leq x_0 xx0 F ( x ) = 0 F(x) = 0 F(x)=0
  4. P { x > x } = 1 − F ( x ) P\{\bm{x}>x\} = 1 - F(x) P{x>x}=1F(x)
  5. 函数 F ( x ) F(x) F(x)是右连续的,即 F ( x + ) = F ( x ) F(x^+) = F(x) F(x+)=F(x)
  6. P { x 1 < x ≤ x 2 } = F ( x 2 ) − F ( x 1 ) P\{x_1 < \bm{x} \leq x_2\} = F(x_2)-F(x_1) P{x1<xx2}=F(x2)F(x1)
  7. P { x = x } = F ( x ) − F ( x − ) P\{\bm{x} = x\} = F(x) - F(x^-) P{x=x}=F(x)F(x)
  8. P { x 1 ≤ x ≤ x 2 } = F ( x 2 ) − F ( x 1 − ) P\{ x_1 \leq \bm{x} \leq x_2 \} = F(x_2) - F(x^-_1) P{x1xx2}=F(x2)F(x1)

注意:在分布函数的不连续点(间断点),左右极限是不相等的,从性质7中, P { x ( ξ ) = x 0 } = F x ( x 0 ) − F x ( x 0 − ) > 0 , P\{ \bm{x}(\xi) = x_0 \} = F_x(x_0) - F_x(x_0^-) >0, P{x(ξ)=x0}=Fx(x0)Fx(x0)>0, 若一个分布函数只有跳跃型的间断点,则上式成立。

例子4-8 假定随机变量 x \bm{x} x满足:如果 ξ ∈ A ,   x ( ξ ) = 1 \xi \in A, ~\bm{x}(\xi) = 1 ξA, x(ξ)=1;否则, x ( ξ ) = 0 \bm{x}(\xi) = 0 x(ξ)=0。求分布函数 F ( x ) F(x) F(x)
解:

  1. 对于 x < 0 x<0 x<0 { x ( ξ ) ≤ x } = { ∅ } \{\bm{x}(\xi) \leq x \} =\{\empty\} {x(ξ)x}={},所以 F ( x ) = 0 F(x)=0 F(x)=0
  2. 对于 0 ≤ x < 1 0 \leq x <1 0x<1 { x ( ξ ) ≤ x } = { A ˉ } \{ \bm{x}(\xi) \leq x \} = \{ \bar{A}\} {x(ξ)x}={Aˉ},所以 F ( x ) = 1 − p = q F(x) = 1 - p =q F(x)=1p=q,其中 p ≡ P ( A ) p \equiv P(A) pP(A)
  3. 对于 x ≤ 1 x \leq 1 x1 { x ( ξ ) ≤ x } = { Ω } \{ \bm{x}(\xi) \leq x \} = \{ \Omega \} {x(ξ)x}={Ω},所以 F ( x ) = 1 F(x) = 1 F(x)=1

这里事件 A A A可对应于试验成功,而事件 A ˉ \bar{A} Aˉ对应于试验失败。


4.2.2 连续型,离散型和混合型随机变量

如果随机变量 x \bm{x} x的分布函数 F x ( x ) F_x(x) Fx(x)是连续的,则称 x \bm{x} x是连续型随机变量。在这种情况下, F x ( x − ) = F x ( x ) F_x(x^-)=F_x(x) Fx(x)=Fx(x) P { x = x } = 0 P\{\bm{x}=x\} = 0 P{x=x}=0
F x ( x ) F_x(x) Fx(x)是仅有有限多个跳跃型间断点的阶梯函数, x \bm{x} x被称为离散型随机变量。如果如果 x i x_i xi是间断点,则 P { x = x i } = F x ( x i ) − F x ( x i − ) = p i . P\{\bm{x}=x_i\} = F_x(x_i) - F_x(x_i^-)=p_i. P{x=xi}=Fx(xi)Fx(xi)=pi.
例如,可得到在间断点 a a a P { x = a } = F x ( a ) − F x ( a − ) = 1 − 0 = 1. P\{\bm{x} = a\}=F_x(a)-F_x(a^-) = 1-0 = 1. P{x=a}=Fx(a)Fx(a)=10=1.
例如,可得到在间断点 0 0 0 P { x = 0 } = F x ( 0 ) − F x ( 0 − ) = q − 0 = q . P\{\bm{x} = 0\}=F_x(0)-F_x(0^-) = q-0 = q. P{x=0}=Fx(0)Fx(0)=q0=q.

例4-9 掷一枚均匀硬币两次,设随机变量 x \bm{x} x表示正面 h h h出现的次数。求分布函数 F x ( x ) F_x(x) Fx(x)

Ω = { h h , h t , t h , t t } \Omega=\{ hh,ht,th, tt \} Ω={hh,ht,th,tt},并且 x ( h h ) = 2 ,   x ( h t ) = 1 ,   x ( t h ) = 1 ,   x ( t t ) = 0. \bm{x}(hh)=2,~\bm{x}(ht)=1,~\bm{x}(th)=1,~\bm{x}(tt)=0. x(hh)=2, x(ht)=1, x(th)=1, x(tt)=0. x < 0 x<0 x<0 { x ( ξ ) ≤ x } = { ∅ } → F x ( x ) = 0 \{\bm{x}(\xi) \leq x\} = \{\empty\} \rightarrow F_x(x) = 0 {x(ξ)x}={}Fx(x)=0;
0 ≤ x < 1 0 \leq x < 1 0x<1 { x ( ξ ) ≤ x } = { t t } → F x ( x ) = P { t } P { t } = 1 4 \{\bm{x}(\xi) \leq x\} = \{ tt \} \rightarrow F_x(x) = P\{t\} P\{t\} = \frac{1}{4} {x(ξ)x}={tt}Fx(x)=P{t}P{t}=41;
1 ≤ x < 2 1 \leq x < 2 1x<2 { x ( ξ ) ≤ x } = { h t , t h , t t } → F x ( x ) = P { h t } + P { t h } + P { t t } = 3 4 \{\bm{x}(\xi) \leq x\} = \{ ht, th, tt \} \rightarrow F_x(x) = P\{ht\} + P\{th\} + P\{tt\} = \frac{3}{4} {x(ξ)x}={ht,th,tt}Fx(x)=P{ht}+P{th}+P{tt}=43;
x ≥ 2 x \geq 2 x2 { x ( ξ ) ≤ x } = Ω = { h h , h t , t h , t t } → F x ( x ) = P { h h } + P { h t } + P { t h } + P { t t } = 1 \{\bm{x}(\xi) \leq x\} =\Omega = \{ hh, ht, th, tt \} \rightarrow F_x(x) = P\{hh\} + P\{ht\} + P\{th\} + P\{tt\} = 1 {x(ξ)x}=Ω={hh,ht,th,tt}Fx(x)=P{hh}+P{ht}+P{th}+P{tt}=1


4.2.3 概率密度函数 (p. d. f)

一个随机变量 x \bm{x} x的分布函数 F ( x ) F(x) F(x)的导数称为 x \bm{x} x的概率密度函数,记为, f x ( x ) f_x(x) fx(x) f x ( x ) ≡ d F x ( x ) d x . f_x(x) \equiv \frac{\text{d} F_x(x)}{\text{d} x}. fx(x)dxdFx(x).
从分布函数 F x ( x ) F_x(x) Fx(x)的单调非减性,概率密度函数满足: ∀ x ∈ ( − ∞ , ∞ ) \forall x \in (-\infty,\infty) x(,) lim ⁡ △ x → 0 F x ( x + △ x ) − F x ( x ) △ ≥ 0 , \lim_{\triangle x \rightarrow 0} \frac{F_x(x + \triangle x) - F_x(x)}{\triangle } \geq 0 , x0limFx(x+x)Fx(x)0, 如果 x \bm{x} x是一个连续随机变量, f x ( x ) f_x(x) fx(x)将是一个连续函数。

如果 x \bm{x} x是一个离散型随机变量,它的概率密度函数具有下面的一般形式: f x ( x ) = ∑ i p i δ ( x − x i ) , f_x(x)=\sum_i p_i \delta(x-x_i), fx(x)=ipiδ(xxi) 这里的 x i x_i xi表示分布函数的间断点。

从前式可得出分布函数: F x ( x ) = ∫ − ∞ x f x ( u ) d x . F_x(x) = \int_{-\infty}^{x} f_x(u) \text{d} x. Fx(x)=xfx(u)dx.

因为 F x ( + ∞ ) = 1 F_x(+\infty) = 1 Fx(+)=1,从上式可得 ∫ − ∞ ∞ f x ( x ) d x = 1 \int_{-\infty}^{\infty} f_x(x) \text{d} x = 1 fx(x)dx=1

P { x 1 < x ( ξ ) ≤ x 2 } = F x ( x 2 ) − F x ( x 1 ) = ∫ x 1 x 2 f x ( x ) d x , P\{x_1 < \bm{x}(\xi) \leq x_2\} = F_x(x_2) - F_x(x_1) = \int_{x_1}^{x_2} f_x(x) \text{d} x, P{x1<x(ξ)x2}=Fx(x2)Fx(x1)=x1x2fx(x)dx, 因此,在区间 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)上, f x ( x ) f_x(x) fx(x)下的面积正好等于随机变量 x \bm{x} x落在区间 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)内的概率,如下图所示:
在这里插入图片描述注意:如果随机变量 x \bm{x} x是连续型的,则上式的区间可用左右都为闭区间的形式,i.e., [ x 1 , x 2 ] [x_1,x_2] [x1,x2]。而如果为 x 1 , x 2 x_1, x_2 x1,x2为间断点,则积分必须包括 f ( x ) f(x) f(x)在相应端点处的脉冲。

x 1 = x , x 2 = x + △ x x_1=x,x_2 = x + \triangle x x1=x,x2=x+x,从上式可得出以下结论:
如果 x \bm{x} x是连续型的,则,只要 △ x \triangle x x足够小, P { x ≤ x ≤ x + △ x } ≈ f ( x ) △ x , P\{x \leq \bm{x} \leq x+\triangle x\} \approx f(x) \triangle x, P{xxx+x}f(x)x, f ( x ) = lim ⁡ △ x → 0 P { x ≤ x ≤ x + △ x } △ x . f(x) = \lim_{\triangle x \rightarrow 0 } \frac{P\{ x\leq \bm{x} \leq x +\triangle x \} }{\triangle x}. f(x)=x0limxP{xxx+x}.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值