【yolov8系列】将yolov8-seg 模型部署到瑞芯微RK3566上

前言

之前记录过【yolov5系列】将模型部署到瑞芯微RK3566上,整体比较流畅,记录了onnx转rknn的相关环境配置,使用的rk版本为rknn-toolkit2-v1.4.0。当前官方库的版本已经更新为1.5,这里还是沿用1.4的版本进行记录。本篇博客是在上篇博客(yolov5的rk3566的部署)的基础上,记录下yolov8n-seg的模型在3566上的部署过程,原理得空再写。若转换后模型出现精度异常可查看官方提供文档 Rockchip_User_Guide_RKNN_Toolkit2_CN-1.4.0.pdf,写的比较详细。

【自己遇到的问题】
1) yolov8模型模型进行全量化后,PC端模拟器结果异常
2) yolov8模型量化后,在PC端模拟器的结果正确,但板端运行结果异常
上述的问题也许不久就会被RK的工程师修复,但若其他的网络出现新的问题,我们是要有问题定位分析并解决的能力。接下来的篇章是自己逐步查找定位问题的一个过程,并在最后一章节附了完整的python相关代码,可正确导出yolov8-seg用于板端推理。

【对于yolov8的目标检测模型】
出现的问题与分割模型是一致的。从网络结构的实现上说,yolov8的实例分割任务,比目标检测任务多了一个语义的分支,且检测分支的channel通道发生变化,其他的结构基本一致。所以明白异常原因,即可同步解决yolov8其他任务的RK部署问题。

【模型量化时容易出现的问题】
1)平台有不支持的算子时,若算子没有可训练参数,可在导出模型前(不用重新训练),将其替换成其他等效功能的算子即可;若算子存在可训练参数,需要在训练前就使用其他算子替换,否则无法进行模型转换。
2)模型量化时,多多注意输出端的concat操作。当合并的数据处于不同的量级,此时该节点量化一定会出现异常。

本篇博客是以自己训练好的模型记录的,结果如下图1。官方的模型转换流程是一致的,需要修改的就是检测类别+输入尺寸+图片预处理方式,以及量化图片,结果如下图2。
在这里插入图片描述
在这里插入图片描述
应评论区同学需求,将官方提供的yolov8-seg模型的转换工程提供在此,链接为 https://gitcode.net/magic_ll/yolov8-seg-to-rk3566

1 RK模型在仿真器中的推理

yolov8官方版本更新迭代较快,每个版本之间的一些算子和节点名称等会发生变化,该篇博客基于如下版本。对于其他的版本需要修改节点名称,以及模型推理出的数据接到后处理时的shape维度。
在这里插入图片描述


1.1 工程代码详解

这里先给出yolov8-seg模型的onnx转rknn、以及仿真器模型的输出结果的后处理 的工程代码。这里转换的工程参考rknn中yolov5的转换,后处理参考yolov8的官方工程(RK还未提供yolov8的方案)。
在这里插入图片描述
其中:

  • 【data文件夹】该文件夹存放着量化数据,这里使用一张图片作为示例。
  • 【model文件夹】为了整齐,这里创建个文件夹用来存放需要转换的onnx模型,以及转换后的rknn模型。
  • 【dataset.txt】文本内容为 量化时需要设置的量化图片路径的列表。可事先提供,可代码生成
  • 【test.py】实现模型转换、仿真器推理的代码
  • 【post.py】yolov8-seg模型输出的后处理代码

这里附上 test.py and post.py两个代码文件内容

## test.py

import os
import numpy as np
import cv2
from rknn.api import RKNN
import post as post
import glob


def makedirs(path):
    if not os.path.exists(path): os.makedirs(path)
    return path

def gen_color(class_num):
    """随机生成掩码颜色, 用于可视化"""
    color_list = []
    np.random.seed(1)
    while 1:
        a = list(map(int, np.random.choice(range(255),3)))
        if(np.sum(a)==0): continue
        color_list.append(a)
        if len(color_list)==class_num: break

    # for i in range(len(color_list)):
    #     a = np.zeros((500,500,3))+color_list[i]
    #     cv2.imwrite(f"./labelcolor/{i}_{self.index2name[i]}.png", a)
    return color_list


def load_and_export_rknnmodel(ONNX_MODEL, RKNN_MODEL, OUT_NODE, QUANTIZE_ON, DATASET=None):
    """
    rknn官方提供的onnx转rknn的代码, 并初始化仿真器运行环境
    需要手动设置的是图片的均值mean_values 和方差std_values
    """
    # Create RKNN object
    rknn = RKNN(verbose=True)

    # pre-process config
    print('--> Config model')
    rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]])
    print('done')

    # Load ONNX model
    print('--> Loading model')
    ret = rknn.load_onnx(model=ONNX_MODEL, outputs=OUT_NODE)
    if ret != 0:
        print('Load model failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')

    ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)
    if ret != 0:
        print('Build model failed!')
        exit(ret)
    print('done')

    # Export RKNN model
    print('--> Export rknn model')
    ret = rknn.export_rknn(RKNN_MODEL)
    if ret != 0:
        print('Export rknn model failed!')
        exit(ret)
    print('done')

    # Init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime()
    # ret = rknn.init_runtime('rk3566')
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')

    return rknn


def gene_dataset_txt(DATASET_path, savefile):
    """获取量化图片文件名的列表, 并保存成txt, 用于量化时设置"""
    file_data = glob.glob(os.path.join(DATASET_path,"*.jpg"))
    with open(savefile, "w") as f:
        for file in file_data:
            f.writelines(f"./{file}\n")

def load_image(IMG_PATH, IMG_SIZE):
    """
    加载图片, 这里每个任务的预处理的规则可能不同, 只需要保证处理后的图片的尺寸和模型输入尺寸保持一致即可
    return: image用于结果可视, img用于模型推理
    """

    image = cv2.imread(IMG_PATH)
    ##==
    # image = cv2.resize(image, (IMG_SIZE[1],IMG_SIZE[0],3))
    ##==
    # image_ = np.zeros((IMG_SIZE[1],IMG_SIZE[0],3), dtype=image.dtype)
    # pad = (IMG_SIZE[1]-360)//2
    # image_[pad:IMG_SIZE[1]-pad,:] = image
    # cv2.imwrite("data/test.jpg", image_)
    # image = image_

    img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    return image, img

def vis_result(image, results, colorlist, save_file):
    """将掩码信息+box信息画到原图上, 并将原图+masks图+可视化图 concat起来, 方便结果查看"""
    boxes, masks, shape = results

    vis_img = image.copy()
    mask_img = np.zeros_like(image)
    for box, mask in zip(boxes, masks):
        mask_img[mask!=0] = colorlist[int(box[-1])] ## cls=int(box[-1])

    vis_img = vis_img*0.5 + mask_img*0.5
    for box in boxes:
        cv2.rectangle(vis_img, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0,0,255),3,4)

    vis_img = np.concatenate([image, mask_img, vis_img],axis=1)
    cv2.imwrite(save_file, vis_img)


if __name__ == '__main__':

    CLASSES = ["floor", "blanket","door_sill","obstacle"]

    ### 模型转换相关设置
    ONNX_MODEL = './model/best_class4_384_640.onnx'
    RKNN_MODEL = './model/best_class4_384_640.rknn'
    DATASET = './dataset.txt'
    DATASET_PATH = 'data'
    QUANTIZE_ON = False
    # QUANTIZE_ON = True
    OUT_NODE = ["output0","output1"]

    ### 预测图片的设置
    IMG_SIZE = [640, 384]  ## 图片的wh
    IMG_PATH = './data/1664025163_1664064856_00164_001.jpg'

    ### 后处理的设置
    save_PATH = makedirs('./result')
    OBJ_THRESH = 0.25
    NMS_THRESH = 0.45

    ### 开始实现====================================================
    if QUANTIZE_ON:
        gene_dataset_txt(DATASET_PATH, DATASET)

    print('1---------------------------------------> export model')
    rknn = load_and_export_rknnmodel(ONNX_MODEL, RKNN_MODEL, OUT_NODE, QUANTIZE_ON, DATASET)

    print('2---------------------------------------> gene colorlist')
    colorlist = gen_color(len(CLASSES))  ## 获取着色时的颜色信息

    print('3---------------------------------------> loading image')
    image, img = load_image(IMG_PATH, IMG_SIZE)

    print('4---------------------------------------> Running model')
    outputs = rknn.inference(inputs=[img])

    print('5---------------------------------------> postprocess')
    ## ============模型输出后的后处理。从yolov8源码中摘取后用numpy库代替了pytorch库
    im = np.transpose(img[np.newaxis],[0,3,1,2])
    results = post.postprocess(outputs, im, img, OBJ_THRESH, NMS_THRESH, classes=len(CLASSES)) ##[box,mask,shape]
    results = results[0]              ## batch=1,取第一个数据即可

    print('6---------------------------------------> save result')
    save_file = os.path.join(save_PATH, os.path.basename(IMG_PATH))
    vis_result(image,  results, colorlist, save_file)

    print()
## post.py
 
import time
import numpy as np
import cv2

def xywh2xyxy(x):
    y = np.copy(x)
    y[..., 0] = x[..., 0] - x[..., 2] / 2  # top left x
    y[..., 1] = x[..., 1] - x[..., 3] / 2  # top left y
    y[..., 2] = x[..., 0] + x[..., 2] / 2  # bottom right x
    y[..., 3] = x[..., 1] + x[..., 3] / 2  # bottom right y
    return y

def clip_boxes(boxes, shape):
    boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
    boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2


def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    clip_boxes(boxes, img0_shape)
    return boxes

def crop_mask(masks, boxes):
    n, h, w = masks.shape
    x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, axis=1)
    r = np.arange(w, dtype=np.float32)[None, None, :]  # rows shape(1,w,1)
    c = np.arange(h, dtype=np.float32)[None, :, None]  # cols shape(h,1,1)

    return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))

def sigmoid(x): 
    return 1.0/(1+np.exp(-x))

def process_mask(protos, masks_in, bboxes, shape):

    c, mh, mw = protos.shape  # CHW
    ih, iw = shape
    masks = sigmoid(masks_in @ protos.reshape(c, -1)).reshape(-1, mh, mw)  # CHW 【lulu】

    downsampled_bboxes = bboxes.copy()
    downsampled_bboxes[:, 0] *= mw / iw
    downsampled_bboxes[:, 2] *= mw / iw
    downsampled_bboxes[:, 3] *= mh / ih
    downsampled_bboxes[:, 1] *= mh / ih

    masks = crop_mask(masks, downsampled_bboxes)  # CHW
    masks = np.transpose(masks, [1,2,0])
    # masks = cv2.resize(masks, (shape[1], shape[0]), interpolation=cv2.INTER_NEAREST)
    masks = cv2.resize(masks, (shape[1], shape[0]), interpolation=cv2.INTER_LINEAR)
    masks = np.reshape(masks,(masks.shape[0], masks.shape[1], -1)) 
    masks = np.transpose(masks, [2,0,1])

    return np.where(masks>0.5,masks,0)

def nms(bboxes, scores, threshold=0.5):
    x1 = bboxes[:, 0]
    y1 = bboxes[:, 1]
    x2 = bboxes[:, 2]
    y2 = bboxes[:, 3]
    areas = (x2 - x1) * (y2 - y1)

    order = scores.argsort()[::-1]
    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)

        if order.size == 1: break
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])
        w = np.maximum(0.0, (xx2 - xx1))
        h = np.maximum(0.0, (yy2 - yy1))
        inter = w * h

        iou = inter / (areas[i] + areas[order[1:]] - inter)
        ids = np.where(iou <= threshold)[0]
        order = order[ids + 1]

    return keep


def non_max_suppression(
        prediction,
        conf_thres=0.25,
        iou_thres=0.45,
        classes=None,
        agnostic=False,
        multi_label=False,
        labels=(),
        max_det=300,
        nc=0,  # number of classes (optional)
):

    # Checks
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

    #【lulu】prediction.shape[1]:box + cls + num_masks
    bs = prediction.shape[0]              # batch size
    nc = nc or (prediction.shape[1] - 4)  # number of classes
    nm = prediction.shape[1] - nc - 4     # num_masks
    mi = 4 + nc                           # mask start index
    xc = np.max(prediction[:, 4:mi], axis=1) > conf_thres ## 【lulu】

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    max_wh = 7680  # (pixels) maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 0.5 + 0.05 * bs  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    output = [np.zeros((0,6 + nm))] * bs ## 【lulu】
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = np.transpose(x,[1,0])[xc[xi]] ## 【lulu】

        # If none remain process next image
        if not x.shape[0]: continue

        # Detections matrix nx6 (xyxy, conf, cls)
        box, cls, mask = np.split(x, [4, 4+nc], axis=1) ## 【lulu】
        box = xywh2xyxy(box)  # center_x, center_y, width, height) to (x1, y1, x2, y2)

        j = np.argmax(cls, axis=1)  ## 【lulu】
        conf = cls[np.array(range(j.shape[0])), j].reshape(-1,1)
        x = np.concatenate([box, conf, j.reshape(-1,1), mask], axis=1)[conf.reshape(-1,)>conf_thres]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n: continue
        x = x[np.argsort(x[:, 4])[::-1][:max_nms]]  # sort by confidence and remove excess boxes 【lulu】

        # Batched NMS
        c = x[:, 5:6] * max_wh  # classes ## 乘以的原因是将相同类别放置统一尺寸区间进行nms
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = nms(boxes, scores, iou_thres) ## 【lulu】
        i = i[:max_det]  # limit detections

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            # LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
            break  # time limit exceeded

    return output


def postprocess(preds, img, orig_img, OBJ_THRESH, NMS_THRESH, classes=None):
    """
    len(preds)=2
    preds[0].shape=(1,40,5040)。其中40=4(box)+4(cls)+32(num_masks), 32为原型系数。5040为3层输出featuremap的grid_ceil的总和。
    preds[1].shape=(1, 32, 96, 160)。32为32个原型掩码。(96,160)为第三层的featuremap的尺寸。
    总共需要3个步骤:
    1. 对检测框, 也就是preds[0], 进行得分阈值、iou阈值筛选, 得到需要保留的框的信息, 以及对应的32为原型系数
    2. 将每个检测框的原型系数乘以每个原型, 得到对应的类别的mask, 此时目标框和mask数量一一对应。然后使用每个检测框框自己对应的mask的featuremap,
        框以外的有效mask删除, 得到最终的目标掩码
    3. 将mask和框都恢复到原尺寸下
    """
    p = non_max_suppression(preds[0],
                                OBJ_THRESH,
                                NMS_THRESH,
                                agnostic=False,
                                max_det=300,
                                nc=classes,
                                classes=None)                            
    results = []
    proto = preds[1]  
    for i, pred in enumerate(p):
        shape = orig_img.shape
        if not len(pred):
            results.append([[], [], []])  # save empty boxes
            continue
        masks = process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:])  # HWC
        pred[:, :4] = scale_boxes(img.shape[2:], pred[:, :4], shape).round()
        results.append([pred[:, :6], masks, shape[:2]])
    return results


def make_anchors(feats_shape, strides, grid_cell_offset=0.5):
    """Generate anchors from features."""
    anchor_points, stride_tensor = [], []
    assert feats_shape is not None
    dtype_ = np.float
    for i, stride in enumerate(strides):
        _, _, h, w = feats_shape[i]
        sx = np.arange(w, dtype=dtype_) + grid_cell_offset  # shift x
        sy = np.arange(h, dtype=dtype_) + grid_cell_offset  # shift y

        sy, sx = np.meshgrid(sy, sx, indexing='ij') 
        anchor_points.append(np.stack((sx, sy), -1).reshape(-1, 2))
        stride_tensor.append(np.full((h * w, 1), stride, dtype=dtype_))
    return np.concatenate(anchor_points), np.concatenate(stride_tensor)


def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
    """Transform distance(ltrb) to box(xywh or xyxy)."""
    lt, rb = np.split(distance, 2, dim)
    x1y1 = anchor_points - lt
    x2y2 = anchor_points + rb
    if xywh:
        c_xy = (x1y1 + x2y2) / 2
        wh = x2y2 - x1y1
        return np.concatenate((c_xy, wh), dim)  # xywh bbox
    return np.concatenate((x1y1, x2y2), dim)  # xyxy bbox

1.2 RK浮点模型在仿真器上的推理

当量化模型结果异常时,先确认浮点模型在仿真器上的运行结果是正常的。
将代码中这些设置修改成与自己模型任务相一致后,将QUANTIZE_ON 设置False即可运行。输出节点的命名,可使用netron打开onnx模型。
在这里插入图片描述
在这里插入图片描述
运行 python test.py

在这里插入图片描述
在这里插入图片描述


1.3 RK量化模型在仿真器上的推理

  1. QUANTIZE_ON = True即可
  2. 运行 python test.py,没有任何检出结果。接下来我们要开始查找原因。
    在这里插入图片描述

1.4 使用RK提供的精度分析脚本

接下来进行精度分析,rknn提供了精度分析的脚本accuracy_analysis。这里适配自己的工程,修改其模型路径等设置,代码实现如下

import os
import sys
import numpy as np
import cv2
import time
from rknn.api import RKNN
import post as post
import glob


def makedirs(path):
    if not os.path.exists(path): os.makedirs(path)
    return path

def show_outputs(outputs):
    output = outputs
    output_sorted = sorted(output, reverse=True)
    top5_str = 'resnet50v2\n-----TOP 5-----\n'
    for i in range(5):
        value = output_sorted[i]
        index = np.where(output == value)
        for j in range(len(index)):
            if (i + j) >= 5:
                break
            if value > 0:
                topi = '{}: {}\n'.format(index[j], value)
            else:
                topi = '-1: 0.0\n'
            top5_str += topi
    print(top5_str)


def readable_speed(speed):
    speed_bytes = float(speed)
    speed_kbytes = speed_bytes / 1024
    if speed_kbytes > 1024:
        speed_mbytes = speed_kbytes / 1024
        if speed_mbytes > 1024:
            speed_gbytes = speed_mbytes / 1024
            return "{:.2f} GB/s".format(speed_gbytes)
        else:
            return "{:.2f} MB/s".format(speed_mbytes)
    else:
        return "{:.2f} KB/s".format(speed_kbytes)


def show_progress(blocknum, blocksize, totalsize):
    speed = (blocknum * blocksize) / (time.time() - start_time)
    speed_str = " Speed: {}".format(readable_speed(speed))
    recv_size = blocknum * blocksize

    f = sys.stdout
    progress = (recv_size / totalsize)
    progress_str = "{:.2f}%".format(progress * 100)
    n = round(progress * 50)
    s = ('#' * n).ljust(50, '-')
    f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)
    f.flush()
    f.write('\r\n')


def accuracy_analysis(ONNX_MODEL, OUT_NODE, QUANTIZE_ON, DATASET=None):
    """
    rknn官方提供的onnx转rknn的代码, 并初始化仿真器运行环境
    需要手动设置的是图片的均值mean_values 和方差std_values
    """
    # Create RKNN object
    rknn = RKNN(verbose=True)

    # pre-process config
    print('--> Config model')
    rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]])
    print('done')

    # Load ONNX model
    print('--> Loading model')
    ret = rknn.load_onnx(model=ONNX_MODEL, outputs=OUT_NODE)
    if ret != 0:
        print('Load model failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')

    ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)
    if ret != 0:
        print('Build model failed!')
        exit(ret)
    print('done')

    # Accuracy analysis
    print('--> Accuracy analysis')
    ret = rknn.accuracy_analysis(inputs=["./data/1664025163_1664064856_00164_001.jpg"], output_dir='./snapshot')
    if ret != 0:
        print('Accuracy analysis failed!')
        exit(ret)
    print('done')

    print('float32:')
    output = np.genfromtxt('./snapshot/golden/output0.txt')
    show_outputs(output)

    print('quantized:')
    output = np.genfromtxt('./snapshot/simulator/output0.txt')
    show_outputs(output)

    return rknn


def gene_dataset_txt(DATASET_path, savefile):
    """获取量化图片文件名的列表, 并保存成txt, 用于量化时设置"""
    file_data = glob.glob(os.path.join(DATASET_path,"*.jpg"))
    with open(savefile, "w") as f:
        for file in file_data:
            f.writelines(f"./{file}\n")


if __name__ == '__main__':

    CLASSES = ["floor", "blanket","door_sill","obstacle"]

    ### 模型转换相关设置
    ONNX_MODEL = './model/best_class4_384_640.onnx'
    RKNN_MODEL = './model/best_class4_384_640.rknn'
    DATASET = './dataset.txt'
    DATASET_PATH = 'data'
    # QUANTIZE_ON = False
    QUANTIZE_ON = True
    OUT_NODE = ["output0","output1"]

    ### 开始实现====================================================
    if QUANTIZE_ON:
        gene_dataset_txt(DATASET_PATH, DATASET)

    print('1---------------------------------------> accuracy_analysis')
    rknn = accuracy_analysis(ONNX_MODEL, OUT_NODE, QUANTIZE_ON, DATASET)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
运行python accuracy_analysis.py后,在【./snapshot/error_analysis.txt】文本中保存着浮点模型和量化模型的每层结果的余弦距离。但查看结果,从一开始就存在较多的小于0.98的余弦距离,如下图。所以在yolov8的模型,不敢相信RK的精度分析方式。

在这里插入图片描述
然后在跟RK方工程师沟通后,逐步发现问题:对于yolov8最后那个concat,我们查看concat前的三个节点输出数据范围,发现其中一个在0 ~1之间(mask_coef分支),另外一个在0 ~600+(box分支)。

  • 两者相加后依然是600+,此时对比concat节点后的浮点模型和量化模型的该节点的输出的余弦距离,及时两者余弦距离很小,也不能反应出问题,因为mask_coef分支和class分支的输出数值较小,变化与否对concat后的输出影响甚微。
  • 所以存在输入数据范围差距过大时,量化时就会出现异常结果。

1.5 量化模型结果异常的解决

当我们分析出最后一层concat的量化存在异常,解决方式有两种:

  • 混合量化 (本篇不做延伸)
  • 将输出端存在异常的节点(这里是最后一个concat),放在后处理中实现

对于第二种方式:
重新设置输出节点,并修改量化为True
在这里插入图片描述
这里需要主要下,对于rknn-toolkit2-v1.4.0,设置四个输出节点,量化后的节点顺序与自己设置的顺序不对齐。但在rknn-toolkit2-v1.5.0 中修复了这个问题。所以在获取模型的4个输出,后concat时的顺序要多多留意。
在这里插入图片描述
运行结果如下:
在这里插入图片描述

2 板端运行结果

rknn的C++实现还未提供yolov8的后处理工程。自己暂不能测完整的板端推理,为了验证输出是否正确,这里将端侧推理的输出直接保存成txt文本,然后使用前面的python工程读取,然后后处理看结果是否正确。
工程的来源与运行在【yolov5系列】将模型部署到瑞芯微RK3566上 中记录过。这里在这个工程中进行修改和添加。修改内容如下:

  1. 对于 outputs[i].want_float的设置,浮点模型必须将其设置为1;量化模型设置为1时,模型输出的反量化后的数据,设置为0时输出的是量化后的数据。
  2. 增加保存输出数据到txt的代码实现。
    在这里插入图片描述

2.1 浮点模型在板端运行

首先测试浮点模型在板端的推理,看输出是否正常。

  • 转换模型时将节点为 OUT_NODE = ["output0","output1"]
    先将转换后的模型推至板端运行,得到 output0.txt、output1.txt。然后在python工程中,加载 output0.txt、output1.txt,运行得到结果。最终得到结果如下:在这里插入图片描述
    观察结果发现,直觉告诉我掩码信息的分布应该是正确的, 然后就尝试使用仿真器的预测结果和板端的预测结果交叉组合,最终发现板端预测结果中box是有问题的,其他是正常的。
    然后我们使用仿真器预测的box,使用板端预测的其他信息,然后结果如下:
    在这里插入图片描述

  • 接下来就要定位出问题的节点,该节点一定在box的输出分支中
    第一次尝试:OUT_NODE = ["494","495","390","output1"]
    第二次尝试: OUT_NODE = ["480","495","390","output1"]


    在第二次尝试的输出节点转换的模型,板端推理的结果+手动实现节点到输出的结构,最终得到正确的结果(这里不附图了,结果与python仿真器结果一致)。说明RKNN板端运行出错的问题在如下的结构中。至于为什么会有问题,已经向RKNN的工程师提出问题,后面补充原因。
    在这里插入图片描述


2.1 量化模型在板端运行

与浮点模型的问题表现完全一致。

3 附 完整的代码

## test.py
import os
import numpy as np
import cv2
from rknn.api import RKNN
import post as post
import glob


def makedirs(path):
    if not os.path.exists(path): os.makedirs(path)
    return path

def gen_color(class_num):
    """随机生成掩码颜色, 用于可视化"""
    color_list = []
    np.random.seed(1)
    while 1:
        a = list(map(int, np.random.choice(range(255),3)))
        if(np.sum(a)==0): continue
        color_list.append(a)
        if len(color_list)==class_num: break

    # for i in range(len(color_list)):
    #     a = np.zeros((500,500,3))+color_list[i]
    #     cv2.imwrite(f"./labelcolor/{i}_{self.index2name[i]}.png", a)
    return color_list


def load_and_export_rknnmodel(ONNX_MODEL, RKNN_MODEL, OUT_NODE, QUANTIZE_ON, DATASET=None):
    """
    rknn官方提供的onnx转rknn的代码, 并初始化仿真器运行环境
    需要手动设置的是图片的均值mean_values 和方差std_values
    """
    # Create RKNN object
    rknn = RKNN(verbose=True)

    # pre-process config
    print('--> Config model')
    rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]])
    print('done')

    # Load ONNX model
    print('--> Loading model')
    ret = rknn.load_onnx(model=ONNX_MODEL, outputs=OUT_NODE)
    if ret != 0:
        print('Load model failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')

    ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)
    if ret != 0:
        print('Build model failed!')
        exit(ret)
    print('done')

    # Export RKNN model
    print('--> Export rknn model')
    ret = rknn.export_rknn(RKNN_MODEL)
    if ret != 0:
        print('Export rknn model failed!')
        exit(ret)
    print('done')

    # Init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime()
    # ret = rknn.init_runtime('rk3566')
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')

    return rknn


def gene_dataset_txt(DATASET_path, savefile):
    """获取量化图片文件名的列表, 并保存成txt, 用于量化时设置"""
    file_data = glob.glob(os.path.join(DATASET_path,"*.jpg"))
    with open(savefile, "w") as f:
        for file in file_data:
            f.writelines(f"./{file}\n")

def load_image(IMG_PATH, IMG_SIZE):
    """
    加载图片, 这里每个任务的预处理的规则可能不同, 只需要保证处理后的图片的尺寸和模型输入尺寸保持一致即可
    return: image用于结果可视, img用于模型推理
    """

    image = cv2.imread(IMG_PATH)
    ##==
    # image = cv2.resize(image, (IMG_SIZE[1],IMG_SIZE[0],3))
    ##==
    # image_ = np.zeros((IMG_SIZE[1],IMG_SIZE[0],3), dtype=image.dtype)
    # pad = (IMG_SIZE[1]-360)//2
    # image_[pad:IMG_SIZE[1]-pad,:] = image
    # cv2.imwrite("data/test.jpg", image_)
    # image = image_

    img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    return image, img

def run_model_cut(outputs, OUT_NODE, IMG_SIZE):
    """480节点后的python的实现"""
    
    if "480" in OUT_NODE:
        ## ============节点480-->494中间的解析
        a0 = outputs[1]
        stride = [8,16,32]
        x_shape = []
        for i in stride:
            x_shape.append([1,1,IMG_SIZE[1]//i,IMG_SIZE[0]//i])
        anchors, strides = (np.transpose(x, (1,0)) for x in post.make_anchors(x_shape, stride, 0.5))
        dbox = post.dist2bbox(a0, anchors[np.newaxis], xywh=True, dim=1) * strides
        outputs[1] = dbox
        ## ============节点"494","495","390"后的concat
        OUT = []
        OUT.append(np.concatenate((outputs[1],outputs[2], outputs[3]),axis=1))
        OUT.append(outputs[0])
        outputs = OUT

    if "494" in OUT_NODE:
        ## ============节点"494","495","390"后的concat
        OUT = []
        OUT.append(np.concatenate((outputs[1],outputs[2], outputs[3]),axis=1))
        OUT.append(outputs[0])
        outputs = OUT

    return outputs


def vis_result(image, results, colorlist, save_file):
    """将掩码信息+box信息画到原图上, 并将原图+masks图+可视化图 concat起来, 方便结果查看"""
    boxes, masks, shape = results

    vis_img = image.copy()
    mask_img = np.zeros_like(image)
    for box, mask in zip(boxes, masks):
        mask_img[mask!=0] = colorlist[int(box[-1])] ## cls=int(box[-1])

    vis_img = vis_img*0.5 + mask_img*0.5
    for box in boxes:
        cv2.rectangle(vis_img, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0,0,255),3,4)

    vis_img = np.concatenate([image, mask_img, vis_img],axis=1)
    cv2.imwrite(save_file, vis_img)


def load_RK3566_output(path, OUT_NODE):
        
    if "output0" in OUT_NODE:
        output0 = np.loadtxt(os.path.join(path, "output0.txt")).reshape((1, 40, 5040))
        output1 = np.loadtxt(os.path.join(path, "output1.txt")).reshape((1, 32, 96, 160))
        return (output0, output1)

    if "480" in OUT_NODE:
        node_480 = np.loadtxt(os.path.join(path, "480.txt")).reshape((1, 4, 5040))
        node_495 = np.loadtxt(os.path.join(path, "495.txt")).reshape((1, 4, 5040))
        node_390 = np.loadtxt(os.path.join(path, "390.txt")).reshape((1, 32, 5040))
        output1 = np.loadtxt(os.path.join(path, "output1.txt")).reshape((1, 32, 96, 160))
        return (node_480, node_495, node_390, output1)

    if "494" in OUT_NODE:
        node_494 = np.loadtxt(os.path.join(path, "494.txt")).reshape((1, 4, 5040))
        node_495 = np.loadtxt(os.path.join(path, "495.txt")).reshape((1, 4, 5040))
        node_390 = np.loadtxt(os.path.join(path, "390.txt")).reshape((1, 32, 5040))
        output1 = np.loadtxt(os.path.join(path, "output1.txt")).reshape((1, 32, 96, 160))
        return (node_494, node_495, node_390, output1)


if __name__ == '__main__':

    CLASSES = ["floor", "blanket","door_sill","obstacle"]

    ### 模型转换相关设置
    ONNX_MODEL = './model/best_class4_384_640.onnx'
    RKNN_MODEL = './model/best_class4_384_640.rknn'
    DATASET = './dataset.txt'
    DATASET_PATH = 'data'
    # QUANTIZE_ON = False
    QUANTIZE_ON = True
    # OUT_NODE = ["output0","output1"]
    # OUT_NODE = ["494","495","390","output1"]
    OUT_NODE = ["480","495","390","output1"]

    ### 预测图片的设置
    IMG_SIZE = [640, 384]
    IMG_PATH = './data/1664025163_1664064856_00164_001.jpg'

    ### 后处理的设置
    save_PATH = makedirs('./result')
    OBJ_THRESH = 0.25
    NMS_THRESH = 0.45

    ### 开始实现====================================================
    if QUANTIZE_ON:
        gene_dataset_txt(DATASET_PATH, DATASET)

    print('1---------------------------------------> export model')
    rknn = load_and_export_rknnmodel(ONNX_MODEL, RKNN_MODEL, OUT_NODE, QUANTIZE_ON, DATASET)

    print('2---------------------------------------> gene colorlist')
    colorlist = gen_color(len(CLASSES))  ## 获取着色时的颜色信息

    print('3---------------------------------------> loading image')
    image, img = load_image(IMG_PATH, IMG_SIZE)

    print('4---------------------------------------> Running model')
    outputs = rknn.inference(inputs=[img])
    # outputs_rk3566 = load_RK3566_output("./RK3566", OUT_NODE)
    outputs = run_model_cut(outputs, OUT_NODE, IMG_SIZE)

    print('5---------------------------------------> postprocess')
    ## ============模型输出后的后处理。从yolov8源码中摘取后用numpy库代替了pytorch库
    im = np.transpose(img[np.newaxis],[0,3,1,2])
    results = post.postprocess(outputs, im, img, OBJ_THRESH, NMS_THRESH, classes=len(CLASSES)) 
    results = results[0]              ## batch=1,取第一个数据即可
    
    print('6---------------------------------------> save result')
    save_file = os.path.join(save_PATH, os.path.basename(IMG_PATH))
    vis_result(image, results, colorlist, save_file)

    print()
    
## post.py
import time
import numpy as np
import cv2

def xywh2xyxy(x):
    y = np.copy(x)
    y[..., 0] = x[..., 0] - x[..., 2] / 2  # top left x
    y[..., 1] = x[..., 1] - x[..., 3] / 2  # top left y
    y[..., 2] = x[..., 0] + x[..., 2] / 2  # bottom right x
    y[..., 3] = x[..., 1] + x[..., 3] / 2  # bottom right y
    return y

def clip_boxes(boxes, shape):
    boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
    boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2


def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    clip_boxes(boxes, img0_shape)
    return boxes

def crop_mask(masks, boxes):
    n, h, w = masks.shape
    x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, axis=1)
    r = np.arange(w, dtype=np.float32)[None, None, :]  # rows shape(1,w,1)
    c = np.arange(h, dtype=np.float32)[None, :, None]  # cols shape(h,1,1)

    return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))

def sigmoid(x): 
    return 1.0/(1+np.exp(-x))

def process_mask(protos, masks_in, bboxes, shape):

    c, mh, mw = protos.shape  # CHW
    ih, iw = shape
    masks = sigmoid(masks_in @ protos.reshape(c, -1)).reshape(-1, mh, mw)  # CHW 【lulu】

    downsampled_bboxes = bboxes.copy()
    downsampled_bboxes[:, 0] *= mw / iw
    downsampled_bboxes[:, 2] *= mw / iw
    downsampled_bboxes[:, 3] *= mh / ih
    downsampled_bboxes[:, 1] *= mh / ih

    masks = crop_mask(masks, downsampled_bboxes)  # CHW
    masks = np.transpose(masks, [1,2,0])
    # masks = cv2.resize(masks, (shape[1], shape[0]), interpolation=cv2.INTER_NEAREST)
    masks = cv2.resize(masks, (shape[1], shape[0]), interpolation=cv2.INTER_LINEAR)
    masks = np.reshape(masks,(masks.shape[0], masks.shape[1], -1)) 
    masks = np.transpose(masks, [2,0,1])

    return np.where(masks>0.5,masks,0)

def nms(bboxes, scores, threshold=0.5):
    x1 = bboxes[:, 0]
    y1 = bboxes[:, 1]
    x2 = bboxes[:, 2]
    y2 = bboxes[:, 3]
    areas = (x2 - x1) * (y2 - y1)

    order = scores.argsort()[::-1]
    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)

        if order.size == 1: break
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])
        w = np.maximum(0.0, (xx2 - xx1))
        h = np.maximum(0.0, (yy2 - yy1))
        inter = w * h

        iou = inter / (areas[i] + areas[order[1:]] - inter)
        ids = np.where(iou <= threshold)[0]
        order = order[ids + 1]

    return keep


def non_max_suppression(
        prediction,
        conf_thres=0.25,
        iou_thres=0.45,
        classes=None,
        agnostic=False,
        multi_label=False,
        labels=(),
        max_det=300,
        nc=0,  # number of classes (optional)
):

    # Checks
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

    #【lulu】prediction.shape[1]:box + cls + num_masks
    bs = prediction.shape[0]              # batch size
    nc = nc or (prediction.shape[1] - 4)  # number of classes
    nm = prediction.shape[1] - nc - 4     # num_masks
    mi = 4 + nc                           # mask start index
    xc = np.max(prediction[:, 4:mi], axis=1) > conf_thres ## 【lulu】

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    max_wh = 7680  # (pixels) maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 0.5 + 0.05 * bs  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    output = [np.zeros((0,6 + nm))] * bs ## 【lulu】
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = np.transpose(x,[1,0])[xc[xi]] ## 【lulu】

        # If none remain process next image
        if not x.shape[0]: continue

        # Detections matrix nx6 (xyxy, conf, cls)
        box, cls, mask = np.split(x, [4, 4+nc], axis=1) ## 【lulu】
        box = xywh2xyxy(box)  # center_x, center_y, width, height) to (x1, y1, x2, y2)

        j = np.argmax(cls, axis=1)  ## 【lulu】
        conf = cls[np.array(range(j.shape[0])), j].reshape(-1,1)
        x = np.concatenate([box, conf, j.reshape(-1,1), mask], axis=1)[conf.reshape(-1,)>conf_thres]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n: continue
        x = x[np.argsort(x[:, 4])[::-1][:max_nms]]  # sort by confidence and remove excess boxes 【lulu】

        # Batched NMS
        c = x[:, 5:6] * max_wh  # classes ## 乘以的原因是将相同类别放置统一尺寸区间进行nms
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = nms(boxes, scores, iou_thres) ## 【lulu】
        i = i[:max_det]  # limit detections

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            # LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
            break  # time limit exceeded

    return output


def postprocess(preds, img, orig_img, OBJ_THRESH, NMS_THRESH, classes=None):
    """
    len(preds)=2
    preds[0].shape=(1,40,5040)。其中40=4(box)+4(cls)+32(num_masks), 32为原型系数。5040为3层输出featuremap的grid_ceil的总和。
    preds[1].shape=(1, 32, 96, 160)。32为32个原型掩码。(96,160)为第三层的featuremap的尺寸。
    总共需要3个步骤:
    1. 对检测框, 也就是preds[0], 进行得分阈值、iou阈值筛选, 得到需要保留的框的信息, 以及对应的32为原型系数
    2. 将每个检测框的原型系数乘以每个原型, 得到对应的类别的mask, 此时目标框和mask数量一一对应。然后使用每个检测框框自己对应的mask的featuremap,
        框以外的有效mask删除, 得到最终的目标掩码
    3. 将mask和框都恢复到原尺寸下
    """
    p = non_max_suppression(preds[0],
                                OBJ_THRESH,
                                NMS_THRESH,
                                agnostic=False,
                                max_det=300,
                                nc=classes,
                                classes=None)                            
    results = []
    proto = preds[1]  
    for i, pred in enumerate(p):
        shape = orig_img.shape
        if not len(pred):
            results.append([[], [], []])  # save empty boxes
            continue
        masks = process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:])  # HWC
        pred[:, :4] = scale_boxes(img.shape[2:], pred[:, :4], shape).round()
        results.append([pred[:, :6], masks, shape[:2]])
    return results


def make_anchors(feats_shape, strides, grid_cell_offset=0.5):
    """Generate anchors from features."""
    anchor_points, stride_tensor = [], []
    assert feats_shape is not None
    dtype_ = np.float
    for i, stride in enumerate(strides):
        _, _, h, w = feats_shape[i]
        sx = np.arange(w, dtype=dtype_) + grid_cell_offset  # shift x
        sy = np.arange(h, dtype=dtype_) + grid_cell_offset  # shift y

        sy, sx = np.meshgrid(sy, sx, indexing='ij') 
        anchor_points.append(np.stack((sx, sy), -1).reshape(-1, 2))
        stride_tensor.append(np.full((h * w, 1), stride, dtype=dtype_))
    return np.concatenate(anchor_points), np.concatenate(stride_tensor)


def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
    """Transform distance(ltrb) to box(xywh or xyxy)."""
    lt, rb = np.split(distance, 2, dim)
    x1y1 = anchor_points - lt
    x2y2 = anchor_points + rb
    if xywh:
        c_xy = (x1y1 + x2y2) / 2
        wh = x2y2 - x1y1
        return np.concatenate((c_xy, wh), dim)  # xywh bbox
    return np.concatenate((x1y1, x2y2), dim)  # xyxy bbox
  • 8
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 25
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值