OpenCV三种立体匹配求视差图算法总结

本文总结了OpenCV中的三种立体匹配算法:BM、SGBM和GC。BM算法速度快但效果一般,适用于实时场景;SGBM是改进版,效果较好,速度较快;GC算法虽然效果最佳,但速度较慢。通过调整关键参数,如minDisparity、numberOfDisparities和uniquenessRatio,可以优化匹配效果。
摘要由CSDN通过智能技术生成

对OpenCV中涉及的三种立体匹配算法进行代码及各自优缺点总结:

首先我们看一下BM算法:

该算法代码:

其中minDisparity是控制匹配搜索的第一个参数,代表了匹配搜苏从哪里开始,numberOfDisparities表示最大搜索视差数uniquenessRatio表示匹配功能函数,这三个参数比较重要,可以根据实验给予参数值。

该方法速度最快,一副320*240的灰度图匹配时间为31ms,视差图如下。

 

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值