如何系统的入门大模型?

本篇文章默认面向对大模型领域感兴趣的程序员。

看一下围绕大模型的应用场景和人才需求:

Prompt工程 基于提示词对大模型的使用,会问问题就行。

基于大模型的应用: 在大模型生态之上做业务层产品。AI主播、AINPC、AI小助手。。。之前是会调API就行。现在有了GPTs,连调用API都可以不用了,动动嘴就可以实现应用生成。

私有知识库:给大模型配个“资料袋” —— 大模型外挂向量数据库/知识图谱

AI Agent: 给大模型“大脑”装上记忆体、手和脚,让它可以作为智能体进行决策和工作。

微调大模型: 基于基座大模型的Fine Tuning

训练大模型: 大模型训练,高端赛道的角逐。

因此普通程序员研究大模型,不妨选择从外到内的思路,从套壳应用,再了解部署、微调和训练。

前导篇

Python

Python:AI领域最常用的编程语言。要学会基础语法、数据结构等。Python不难,对于一般程序员来说很容易上手。

向量数据库

随着AI的发展进入新的时代,知识的存储和表示就和向量分不开了。向量这个数学表达,在目前是人与AI交互的中间媒介。 向量数据库是一种特殊的数据库,它以多维向量的形式保存信息。让大模型拥有“记忆”,就需要用到向量数据库。

常见的向量数据库包括:Chroma、ES、FAISS、Milvus等,需要了解和会用。

实战篇

LangChain

要将大语言模型的能力开发成产品,就需要LangChain帮忙了。LangChain 是一个 LLM 编程框架,它提供了一套工具、组件和接口,借助LangChain,我们可以更加便利地给大模型这个“大脑”装上记忆和四肢,更轻松地完成基于大模型的应用开发。

比如带有私有知识库的办公助手等AI Agent,都可以借助LangChain来完成。

LangChain主要支持6种组件:

  • Models:模型,各种类型的模型和模型集成
  • Prompts:提示,包括提示管理、提示优化和提示序列化
  • Memory:记忆,用来保存和模型交互时的上下文状态
  • Indexes:索引,用来结构化文档,以便和模型交互
  • Chains:链,一系列对各种组件的调用
  • Agents:代理,决定模型采取哪些行动,执行并且观察流程,直到完成为止

在本地搭建部署开源模型

从零入门大模型技术,其实还是有点门槛的,硬件资源就是一关。但还是有办法的。

建议选择清华ChatGLM2-6B开源大模型进行本地部署。ChatGLM2-6B 是 ChatGLM-6B 的第二代版本,62亿的参数量的开源中英双语对话模型。

ChatGLM2-6B在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,具有更强大的性能、支持更长的上下文、更强的推理能力的特点,是Poor流选手的福音。

各种尺寸的模型需要消耗的资源:

提高篇

机器学习基础

了解分类算法、回归算法、聚类算法、降维算法等经典的机器学习算法;
模型评估:交叉验证、偏差和方差、过拟合和欠拟合、性能指标(准确率、召回率F1分数等)。

深度学习基础

掌握CNN,RNN等经典网络模型,然后就是绕不开的Transformer

Transformer是一个引入了 Self-attention 机制的模型,它是大语言模型的基石,支撑着庞大的大语言模型家族。

在代码层面,必须掌握的就是神经网络的框架,主流框架有tenorflow,Pytorch等。

NLP 基础知识

NLP、NLU、NLG的差别;

自然语言处理中的基本任务和相关的应用;

TF-IDF、word2vec、BERT等基本算法和技术;

预训练语言模型:模型的输入、模型的结构、训练的任务、模型的输出;

可以直接从word2vec开始了解,然后到transformer,bert。

了解LLM的3个分支和发展史

根据使用的 Transformer 的方式不同,有3种常见的主流架构:encoder-only,encoder-decoder和decoder-only

这张图清晰地展示了LLM的3个分支:

  • encoder-only:BERT
  • encoder-decoder:T5, GLM-130B, UL2
  • decoder-only:GPT系列, LLaMA, OPT, PaLM,BLOOM

了解典型 Decoder-only 语言模型的基础结构和简单原理。

深入篇

掌握 Continue Pre-train、Fine-tuning 已有开源模型的能力;
掌握 Lora、QLora 等最小化资源进行高效模型训练的PEFT技术;
掌握强化学习基础;
Alignment与RLHF
数据处理技术;
压缩模型、推理加速技术;
分布式训练并行技术
分布式网络通信技术
生产环境部署大模型的相关技术。

很多人说,大模型赛道不是普通人能玩的。狭义的大模型赛道,是这样,更多的是看运气。但是大模型之上的生态,目前来看是广阔的蓝海。退一万步讲,就是为了提高工作效率自己先用起来,也是个很好的加持。所以积极了解大模型,入股不亏。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值