【2025年五一数学建模竞赛A题】支路车流量推测问题+完整思路+paper+代码

本人7年数学建模竞赛经验,历史获奖率百分之百。团队成员都是拿过全国一等奖的硕博,有需要数模竞赛帮助的可以私信我

本题主要涉及分段函数数据拟合,分段回归,参数估计,最小二乘估计等知识点

1.问题背景与重述

在这里插入图片描述

2.解题思路分析

2.1 问题一的分析

问题1是关于Y型道路,主路3有监测数据,而支路1和2没有。已知支路1线性增长,支路2先增后减。我需要建立模型将主路的总流量分解成两个支路的流量之和。可能需要用线性函数来表示支路1,而支路2则需要分段线性函数,找到转折点。然后通过最小二乘法或者类似的优化方法来拟合参数,确保总流量等于主路数据。
在这里插入图片描述

2.2 问题二的分析

问题2,更复杂一些,因为有多个支路汇入主路5,而且有些支路的流量有延迟或者周期性。比如支路1稳定,支路2分三个阶段,支路3先增后稳,支路4周期性。这里需要考虑时间延迟的影响,因为支路1和2的车辆到达主路需要2分钟。所以主路的数据实际上是这些支路在两分钟前的流量之和。我需要调整时间变量,把主路的时间减去2分钟来对应支路的流量。然后分别对每个支路建立模型,可能用常数函数、分段线性函数和正弦函数来拟合。之后还要分析误差,比如计算残差或者决定系数R²来评估模型的准确性。

2.3 问题三的分析

问题3涉及到交通信号灯的影响,支路3在红灯时流量为0,绿灯时可能有稳定或线性变化。主路的数据是支路1、2和3的总和,但支路3的数据受信号灯控制。需要确定信号灯的绿灯时间段,这可能通过分析主路数据中的突变点来判断,比如流量突然增加可能对应绿灯开启。然后分别对每个支路建模,考虑信号灯的状态对支路3的影响。此外,支路1和2的流量也有自己的趋势,需要结合这些因素来分解总流量。

2.4 问题四的分析

问题4的情况类似问题3,但主路的数据存在误差,所以需要更鲁棒的模型,比如使用加权最小二乘法或者鲁棒回归方法来减少误差的影响。同时,信号灯的绿灯启动时刻是未知的,需要从支路3的流量模式中推断出来,可能需要寻找流量突变的点作为绿灯开始的标志。

2.5 问题五的分析

问题5则是一个理论问题,要求确定在哪些关键时间点监测主路数据,才能唯一确定各支路的函数表达式。这需要分析每个支路所需的参数数量,比如转折点、周期参数等,然后在那些能够唯一确定参数的时间点进行观测。例如,问题2中的支路2有两个转折点,可能需要在这两个时间点以及支路4的周期极值点进行观测。
,误差分析是关键部分,需要评估模型的拟合程度,可能使用统计指标如均方误差(MSE)或平均绝对误差(MAE)。对于问题5,需要确定最少的观测点,这涉及到参数估计的必要条件,即观测点必须覆盖所有参数的自由度,避免出现欠定问题。

在思考过程中,我需要确保每个模型的假设都符合题目中的条件,比如函数的连续性和严格单调性。同时,要注意时间对齐的问题,尤其是各支路到达主路的时间延迟。对于存在信号灯的情况,还需要考虑其对流量的影响,可能需要引入分段函数或者逻辑函数来模拟信号灯状态的变化。

3.完整代码+结果分享

完整30页论文和代码已完成
在这里插入图片描述

下载链接如下:

https://mbd.pub/o/bread/mbd-aZ6clJ9v

2021五一数模A思路+参考资料+a代码疫苗生产优化问题 问题 1:本需要对于每箱疫苗在所有工位上的生产时间进行描述性统计分析,由于先前对于 不同类型的疫苗进行模拟实验,根据已经掌握的实验数据直接进行描述性分析即可。可以通过 EXCEL、SPSS、R 语言等数据处理软件直接进行分析,建议分析完成之后分别对于均值、方差、 最值、概率分布等不同的指标解释其数理意义以及描述不同工位生产疫苗的能力水平,方便为下一 步的研究打基础。难点在于数据的处理。 问题 2:根据附件中所给出的数据,先对其所有的数据求出平均值。将平均值作为参考指标。 题目中原先说明必须按照 CJ1-CJ2-CJ3-CJ4 的顺序完成 4 个工位都进行了加工才算加工完成。当一 种疫苗进入生产步骤之后,必须完成该步骤的生产才可以安排下一种疫苗进入。由于目标函数是实 现生产时间最短,本提供两种可选方案,原理相通。一、可以选择使用 LINGO 软件安排最优线 路,设定每一个步骤所需要实现的时间长短以及该疫苗所需要完成加工的总时间,尽可能实现每一 个加工步骤都有不同类型的疫苗在进行加工,如果每一个加工步骤都能保证中间加工的空挡不断层, 即可实现加工效率的最优化。二、最优化算法中可以使用 TSP 算法安排最优的线路,通过该算法 也可以获得最优的加工顺序。要点在于本选用生产的平均值作为参考指标,大大降低了计算步骤 的难度。难点在于计算好每一类型的疫苗加工生产过程中所需要的总时间和不同加工步骤之间相距 的时间差的,其中的变量在于不同的疫苗进入加工步骤的顺序。加工步骤不可以变动顺序。 问题 3:本问题 2 最明显的区别就是每个工位生产疫苗的时间不再使用平均值来进行代替 了。问题 1 种研究了不同的指标来反映不同工位生产疫苗的能力水平,可以在其中进行选取即可完 成时间变量的选择。题目要求交货总时间比问题 2 的总时间缩短 5%,即在原先问题的基础之上进 行优化目标。根据优化算法来进行生产顺序调度安排,本建议使用禁忌搜索算法来寻求最优解, 该算法可以避免陷入局部最优。求解过程与问题 2 相近,不再赘述。确定完成生产顺序之后,由于 生产的每一个过程中的时间并不是一个确定值,而是分布于一个相近的区间内,所以可以通过区间 估计来确定概率数值。本也可以使用遗传算法进行求解,确定完成遗传算法的变异率,通过代码 的计算可以完成。 问题 4:本再次引入新的限制条件,限制生产条件和生产时间。每一天时间长度为 16 小时, 且要求必须完成某一种疫苗的全部生产过程才可以开始生产别的种类的疫苗。生产时间长度可以使 用问题一中给出的相关指标变量从而确定单一产品的时间。当确定完成时间之后,分别对于所有的 产品生产的时间进行计算即可得出所需要的生产时间。时间指标可以是一个变动的过程,由于生产 的时间必须为天数的整数单位(达不到一天按一天计算,若一天内能完成两项任务,可以一天安排 两种疫苗的生产),生产任务不可以拆分,所以需要读者有耐心选择正确的计算方法计算出不同疫 苗产品的生产时间以及规划不同疫苗的生产周期。由于已经限定了可靠性为 90%,生产时间最短 即可。使用不同疫苗产品的生产总时间作为目标变量,通过调动不同的疫苗产品作为自变量的生产 过程,确定约束条件即可计算出预期时间。 问题 5:安排生产计划是一项运筹规划类型题目。根据附件给出的不同疫苗产品的报价、生产 疫苗所需要的时间、不同产品疫苗的最大任务数量进行线性规划,难点在于线性规划的约束条件是 函数关系,根据生产单一疫苗所需要的时间进行确定相关参数。销售额=疫苗的出厂价格×出厂数 量,则控制不同的疫苗的产量可以通过神经网络模型等深度学习算法进行自动求解。规划模型的条 件和生产的顺序可以通过模型计算过程自动求得最优解。由于神经网络模型自身容易陷入局部收敛 的死循环中,可以加入优化算法对该模型进行优化。切记全文所使用的优化算法一定不能重复。可 以参考:遗传算法、蚁群算法、粒子群算法等。 备注:由于生产过程的不确定性,所以生产单一疫苗的时间确定需要根据实际模拟的数据进行 确定。题目问题 2 要求使用平均值进行确定,别的题目仍然可以使用,但是有能力的话建议使用 别的指标进行确定。
### 解决方案概述 针对2025美国大学生数学建模竞赛(CUMCM)C,假设该题目涉及复杂系统优化问题,可以借鉴多LLM路由系统的理念来设计解决方案。具体而言,可以通过构建类似于TO-Router的框架,利用多个大型语言模型(LLMs)的能力来处理不同方面的子问题[^1]。 对于此类问题,通常会涉及到排队论的应用场景。基于给定参数如服务器数量(c),队列容量(k),实体总数(m),收入率(Income Rate),服务率(Service Rate),以及由此衍生的各项性能指标(如平均等待时间等)[^2],建立相应的数学模型是解决问题的关键步骤之一。 ### 数学模型描述 考虑到可能存在的资源分配不均和服务效率低下等问题,在此建议采用混合整数线性规划(MILP)作为主要求解工具。定义决策变量x_ij表示第i类请求被指派到j号处理器的概率;y_jk代表当有k个待处理项时开启额外辅助计算单元的状态(开/关)。目标函数设定为最小化总成本: \[ \min Z=\sum_{i}\sum_{j}c_{ij}x_{ij}+\lambda\sum_kd_ky_k \] 其中\(c_{ij}\)为将任务从源i转移到目的地j所需的费用;\(\lambda\)用于调节两部分权重的比例关系;而\(d_k\)则反映了启动备用设施所带来的固定支出。 约束条件包括但不限于: - 请求分发比例需满足概率性质:\[\sum_j x_{ij}=1,\forall i\] - 队列长度不可超过限定值:\[q_i(t)\le K, \forall t,i\] - 动态调整机制下的最大并发量控制:\[\sum_iz_{ijk}(t)\cdot s_j\le S_{max},\forall j,k,t\] 这里引入二元指示器\(z_{ijk}(t)\in{0,1}\),用来标记某时刻是否存在由位置i发出并指向节点j且携带数据包大小等于或小于阈值K的任务实例;同时设s_j表示单台机器每秒可完成的工作量,S_max为其上限。 ### Python代码实现示例 下面给出一段简单的Python伪代码片段,用于模拟上述过程中的核心逻辑运算环节: ```python import numpy as np from scipy.optimize import linprog def solve_milp_problem(cost_matrix, lambda_param, d_vector, max_service_rate): num_requests, num_servers = cost_matrix.shape # 构造系数矩阵A_ub 和 b_ub 来表达所有约束条件 A_ub = [] b_ub = [] # 添加关于请求分布的要求 for _ in range(num_requests): row = [1]*num_servers + [0]*(len(d_vector)) A_ub.append(row) b_ub.append(1) # 增加有关队列限制的信息 ... # 定义目标向量c c = list(cost_matrix.flatten()) + list(lambda_param * d_vector) res = linprog(c=c,A_ub=A_ub,b_ub=b_ub,integrality=[0]*len(c)) return res.x[:num_requests*num_servers].reshape((num_requests,num_servers)),res.x[num_requests*num_servers:] if __name__ == "__main__": # 初始化输入参数... optimal_solution = solve_milp_problem(...) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

maligebilaowang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值