本人7年数学建模竞赛经验,历史获奖率百分之百。团队成员都是拿过全国一等奖的硕博,有需要数模竞赛帮助的可以私信我
本题主要涉及分段函数数据拟合,分段回归,参数估计,最小二乘估计等知识点
1.问题背景与重述
2.解题思路分析
2.1 问题一的分析
问题1是关于Y型道路,主路3有监测数据,而支路1和2没有。已知支路1线性增长,支路2先增后减。我需要建立模型将主路的总流量分解成两个支路的流量之和。可能需要用线性函数来表示支路1,而支路2则需要分段线性函数,找到转折点。然后通过最小二乘法或者类似的优化方法来拟合参数,确保总流量等于主路数据。
2.2 问题二的分析
问题2,更复杂一些,因为有多个支路汇入主路5,而且有些支路的流量有延迟或者周期性。比如支路1稳定,支路2分三个阶段,支路3先增后稳,支路4周期性。这里需要考虑时间延迟的影响,因为支路1和2的车辆到达主路需要2分钟。所以主路的数据实际上是这些支路在两分钟前的流量之和。我需要调整时间变量,把主路的时间减去2分钟来对应支路的流量。然后分别对每个支路建立模型,可能用常数函数、分段线性函数和正弦函数来拟合。之后还要分析误差,比如计算残差或者决定系数R²来评估模型的准确性。
2.3 问题三的分析
问题3涉及到交通信号灯的影响,支路3在红灯时流量为0,绿灯时可能有稳定或线性变化。主路的数据是支路1、2和3的总和,但支路3的数据受信号灯控制。需要确定信号灯的绿灯时间段,这可能通过分析主路数据中的突变点来判断,比如流量突然增加可能对应绿灯开启。然后分别对每个支路建模,考虑信号灯的状态对支路3的影响。此外,支路1和2的流量也有自己的趋势,需要结合这些因素来分解总流量。
2.4 问题四的分析
问题4的情况类似问题3,但主路的数据存在误差,所以需要更鲁棒的模型,比如使用加权最小二乘法或者鲁棒回归方法来减少误差的影响。同时,信号灯的绿灯启动时刻是未知的,需要从支路3的流量模式中推断出来,可能需要寻找流量突变的点作为绿灯开始的标志。
2.5 问题五的分析
问题5则是一个理论问题,要求确定在哪些关键时间点监测主路数据,才能唯一确定各支路的函数表达式。这需要分析每个支路所需的参数数量,比如转折点、周期参数等,然后在那些能够唯一确定参数的时间点进行观测。例如,问题2中的支路2有两个转折点,可能需要在这两个时间点以及支路4的周期极值点进行观测。
,误差分析是关键部分,需要评估模型的拟合程度,可能使用统计指标如均方误差(MSE)或平均绝对误差(MAE)。对于问题5,需要确定最少的观测点,这涉及到参数估计的必要条件,即观测点必须覆盖所有参数的自由度,避免出现欠定问题。
在思考过程中,我需要确保每个模型的假设都符合题目中的条件,比如函数的连续性和严格单调性。同时,要注意时间对齐的问题,尤其是各支路到达主路的时间延迟。对于存在信号灯的情况,还需要考虑其对流量的影响,可能需要引入分段函数或者逻辑函数来模拟信号灯状态的变化。
3.完整代码+结果分享
完整30页论文和代码已完成
下载链接如下:
https://mbd.pub/o/bread/mbd-aZ6clJ9v