TPAMI 2024 | 对象亲和性学习:迈向无需标注的实例分割

305 篇文章 22 订阅 ¥59.90 ¥99.00

题目:Object Affinity Learning: Towards Annotation-Free Instance Segmentation

对象亲和性学习:迈向无需标注的实例分割

作者:Yuqi Wang; Yuntao Chen; Zhaoxiang Zhang

源码链接: https://github.com/Robertwyq/Object-Affinity


摘要

我们解决的是野外环境中无需标注的实例分割问题,旨在减轻手动掩膜标注的昂贵成本。现有方法利用颜色、边缘和纹理等视觉线索来生成实例分割的伪掩膜。然而,由于仅通过视觉外观定义对象存在歧义,这些方法在复杂场景中无法区分对象与背景。除了视觉线索外,对象在空间上是一体的,并且随着时间的推移一起移动,这表明几何线索,如空间连续性和运动一致性,也可用于解决此问题。为了直接利用几何线索,我们提出了一种基于亲和性的范式,称为对象亲和学习,这是无需标注的实例分割的代理任务,旨在通过从几何线索中学习特征表示来判断两个像素是否来自同一对象。在推理过程中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值