题目:Object Affinity Learning: Towards Annotation-Free Instance Segmentation
对象亲和性学习:迈向无需标注的实例分割
作者:Yuqi Wang; Yuntao Chen; Zhaoxiang Zhang
源码链接: https://github.com/Robertwyq/Object-Affinity
摘要
我们解决的是野外环境中无需标注的实例分割问题,旨在减轻手动掩膜标注的昂贵成本。现有方法利用颜色、边缘和纹理等视觉线索来生成实例分割的伪掩膜。然而,由于仅通过视觉外观定义对象存在歧义,这些方法在复杂场景中无法区分对象与背景。除了视觉线索外,对象在空间上是一体的,并且随着时间的推移一起移动,这表明几何线索,如空间连续性和运动一致性,也可用于解决此问题。为了直接利用几何线索,我们提出了一种基于亲和性的范式,称为对象亲和学习,这是无需标注的实例分割的代理任务,旨在通过从几何线索中学习特征表示来判断两个像素是否来自同一对象。在推理过程中,