【聚类算法解析系列07】聚类与深度学习的结合——深度嵌入聚类(DEC)


【聚类算法解析系列07】聚类与深度学习的结合——深度嵌入聚类(DEC)


1. DEC的数学本质与物理诠释

1.1 概率框架下的形式化推导

DEC可视为概率生成模型与判别模型的完美融合:

  • 生成部分:自编码器学习潜在空间分布( p(z|x) )
  • 判别部分:聚类层建模类别分布( p(c|z) )

联合概率分解
[
p(x,c) = p(x)p(c|x) = \int p(x|z)p(z)p(c|z) dz
]
通过变分推断最大化证据下界(ELBO):
[
\mathcal{L} = \mathbb{E}{q(z|x)}[\log p(x|z)] - \text{KL}(q(z|x)|p(z)) + \mathbb{E}{q(z|x)}[\log p(c|z)]
]

1.2 目标函数的物理意义
  • 重构项:保持数据拓扑结构(类似分子间作用力)
  • KL散度项:规范潜在空间分布(类似热力学约束)
  • 聚类项:驱动类别分离(类似电磁排斥力)

动态平衡方程
[
\frac{\partial \mathcal{L}}{\partial t} = \alpha \nabla_{\theta} \mathcal{L}{\text{recon}} + \beta \nabla{\theta} \mathcal{L}{\text{KL}} + \gamma \nabla{\theta} \mathcal{L}_{\text{cluster}}
]
其中系数比( \alpha:\beta:\gamma )决定优化轨迹的相变路径

在这里插入图片描述


2. 工业级实现与优化

2.1 医疗影像分割实战

数据集:BraTS 2023脑肿瘤数据集(3D MRI,4模态)
网络架构

class 3D_DEC(nn.Module):
    def __init__(self):
        self.encoder = nn.Sequential(
            Conv3d(4, 64, kernel_size=3, stride=2),  # 输入4模态
            InstanceNorm3d(64
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Is code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值