【聚类算法解析系列07】聚类与深度学习的结合——深度嵌入聚类(DEC)
1. DEC的数学本质与物理诠释
1.1 概率框架下的形式化推导
DEC可视为概率生成模型与判别模型的完美融合:
- 生成部分:自编码器学习潜在空间分布( p(z|x) )
- 判别部分:聚类层建模类别分布( p(c|z) )
联合概率分解:
[
p(x,c) = p(x)p(c|x) = \int p(x|z)p(z)p(c|z) dz
]
通过变分推断最大化证据下界(ELBO):
[
\mathcal{L} = \mathbb{E}{q(z|x)}[\log p(x|z)] - \text{KL}(q(z|x)|p(z)) + \mathbb{E}{q(z|x)}[\log p(c|z)]
]
1.2 目标函数的物理意义
- 重构项:保持数据拓扑结构(类似分子间作用力)
- KL散度项:规范潜在空间分布(类似热力学约束)
- 聚类项:驱动类别分离(类似电磁排斥力)
动态平衡方程:
[
\frac{\partial \mathcal{L}}{\partial t} = \alpha \nabla_{\theta} \mathcal{L}{\text{recon}} + \beta \nabla{\theta} \mathcal{L}{\text{KL}} + \gamma \nabla{\theta} \mathcal{L}_{\text{cluster}}
]
其中系数比( \alpha:\beta:\gamma )决定优化轨迹的相变路径
2. 工业级实现与优化
2.1 医疗影像分割实战
数据集:BraTS 2023脑肿瘤数据集(3D MRI,4模态)
网络架构:
class 3D_DEC(nn.Module):
def __init__(self):
self.encoder = nn.Sequential(
Conv3d(4, 64, kernel_size=3, stride=2), # 输入4模态
InstanceNorm3d(64