一张示意图看懂深度嵌入聚类DEC

深度嵌入聚类算法的架构

步骤 1:根据输入数据集,训练自编码器将原始变量矩阵映射到潜在特征。

步骤 2:对潜在特征进行 K 均值聚类。

步骤 3-6:然后,为每个样本计算六个软标签,并估计目标分布,最大化高软标签和低软标签的分离。随后,优化自编码器的编码器,以最小化软标签与目标分布之间的 Kullback-Leibler 散度损失,进行 140 次迭代。

- 图源:Deep embedded clustering generalisability and adaptation for integrating mixed datatypes: two critical care cohorts | Scientific Reports

### 关于深度嵌入聚类在MATLAB中的实现 #### 深度嵌入聚类简介 深度嵌入聚类(Deep Embedded Clustering, DEC)是一种结合了自动编码器和传统聚类算法的方法。该方法首先利用自动编码器对高维数据进行降维表示,然后在此基础上执行聚类操作。这种方法不仅能够有效捕捉到数据的本质结构,还能显著提升聚类效果。 #### MATLAB环境下的DEC实现流程 为了实现在MATLAB环境中构建并训练一个简单的深度嵌入聚类模型,下面是一个简化版的工作流: 1. **准备阶段** - 加载所需的数据集; - 对原始数据做标准化处理以适应后续的神经网络输入需求。 2. **搭建自编码器架构** 使用`matlab`内置函数创建一个多层感知机作为基础框架来充当自编码器的角色。 ```matlab % 定义自编码器结构 hiddenLayerSize = 10; % 隐藏层数量可以根据具体应用场景调整 autoenc = trainAutoencoder(trainData', ... 'NumHiddenUnits', hiddenLayerSize,... 'MaxEpochs', 400); ``` 3. **初始化聚类中心** 基于初步得到的低纬特征向量集合,采用K-means或者其他快速收敛的传统聚类方式获取初始聚类质心位置。 4. **目标函数定义与优化求解** 构建损失函数用于指导整个迭代过程直至满足停止条件为止。此过程中涉及到两个部分:一个是重构误差项用来保持样本间相对距离不变;另一个则是软分配概率分布之间的KL散度衡量差异程度最小化问题。 5. **更新权重参数** 利用反向传播机制不断调节各层节点间的连接强度即权值大小从而使得整体系统趋于稳定状态。 6. **最终分类标签预测** 当完成上述所有步骤之后便可以获得较为理想的簇划分方案进而赋予每一个测试实例相应的类别标识符。 7. **评估指标计算** 计算常见的内部有效性指数(如轮廓系数Silhouette Coefficient)、外部一致性测度(比如ARI Adjusted Rand Index)等统计学评价标准检验所提方案的有效性和合理性。 8. **结果可视化呈现** 将最后获得的结果借助图形化手段直观展现出来便于观察理解。 #### 示例代码片段 这里给出一段核心伪代码帮助读者更快地上手实践: ```matlab function decModel = deepEmbeddedClustering(data,k) % data: 输入矩阵形式的数据集 % k: 设定好的期望簇数 %% Step 1 & 2 Train AutoEncoder and Extract Features autoEnc = ... ; % 自动编码器训练省略... features = encode(autoEnc,data'); %% Step 3 Initialize Cluster Centers via KMeans++ initCenters = initializeClusterCenters(features,k); %% Step 4 Define Objective Function objFunc = @(W,beta,q,z)decLoss(W,beta,q,z); %% Step 5 Optimize Weights Using Backpropagation Algorithm options = optimoptions('fminunc','Display','iter',... 'Algorithm','quasi-newton'); [weights,objVal] = fminunc(objFunc,[initWeights(:)',beta],options); %% Step 6 Predict Labels Based on Optimized Model Parameters qPred = predictLabels(weights,features'); end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值