深度嵌入聚类算法的架构。
步骤 1:根据输入数据集,训练自编码器将原始变量矩阵映射到潜在特征。
步骤 2:对潜在特征进行 K 均值聚类。
步骤 3-6:然后,为每个样本计算六个软标签,并估计目标分布,最大化高软标签和低软标签的分离。随后,优化自编码器的编码器,以最小化软标签与目标分布之间的 Kullback-Leibler 散度损失,进行 140 次迭代。
深度嵌入聚类算法的架构。
步骤 1:根据输入数据集,训练自编码器将原始变量矩阵映射到潜在特征。
步骤 2:对潜在特征进行 K 均值聚类。
步骤 3-6:然后,为每个样本计算六个软标签,并估计目标分布,最大化高软标签和低软标签的分离。随后,优化自编码器的编码器,以最小化软标签与目标分布之间的 Kullback-Leibler 散度损失,进行 140 次迭代。