多种LLM的API使用及开发流程

本文详细介绍了如何通过OpenAIAPI和LangChain调用ChatGPT3.5模型,涉及注册、API密钥管理、参数设置以及使用LangChain封装的便捷接口。还提及了文心一言的API调用流程和ChatGLM模型的使用方法。
摘要由CSDN通过智能技术生成

ChatGPT

        调用 OpenAI API 是付费服务,需要先获取 OpenAI API Key,之后才能在应用中访问 ChatGPT。首先需要在OpenAI注册账号(登录注册需要科学的上网手段,有可靠方法可留言),如果能成功注册就可以获得一个 OpenAI API KEY,将这个 key 保存到一个.env文件中,将这个文件放到项目根目录下。

读取.env 文件代码:

import os
import openai
from dotenv import load_dotenv, find_dotenv

# 读取本地/项目的环境变量。
# find_dotenv()寻找并定位.env文件的路径
# load_dotenv()读取该.env文件,并将其中的环境变量加载到当前的运行环境中
# 如果你设置的是全局的环境变量,这行代码则没有任何作用。
_ = load_dotenv(find_dotenv())

# 如果你需要通过代理端口访问,你需要如下配置
os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:7890'
os.environ["HTTP_PROXY"] = 'http://127.0.0.1:7890'

# 获取环境变量 OPENAI_API_KEY
openai.api_key = os.environ['OPENAI_API_KEY']

使用OpenAI原生接口调用

# 获取环境变量 OPENAI_API_KEY
openai.api_key = os.environ['OPENAI_API_KEY']

# 创建ChatCompletion
completion = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",  # 调用ChatGPT3.5
    messages=[
        {"role": "system", "content": "You are an assistant."},
        {"role": "user", "content": "Hello, GPT!"}
    ]
)

参数解释:

model:调用的模型,取值:“gpt-3.5-turbo”(ChatGPT-3.5)、“gpt-3.5-16k-0613”(ChatGPT-3.5 16K 版本)、“gpt-4”(ChatGPT-4)。

message:提示词,ChatCompletion 的 message 需要传入一个列表,列表中包括多个不同角色的 提示词。system:即system prompt;user:用户输入的 prompt;assitance:助手,一般是模型历史回复,作为给模型参考的示例。(一般不需要使用到 system 与 assistance)

temperature:Temperature 系数,控制模型返回的稳定性。

max_tokens:模型输出的最大 token 数。OpenAI 计算 token 数是合并计算 Prompt 和 Completion 的总 token 数,要求总 token 数不能超过模型上限(如默认模型 token 上限为 4096),如果输入的 prompt 较长,需要设置较小的 max_token 值,否则会报错超出限制长度

使用LangChain调用OpenAI

LangChain 有多种大模型的封装,可以调用 ChatGPT 搭建个人应用。

from langchain.chat_models import ChatOpenAI
chat = ChatOpenAI(temperature=0.0)

ChatOpenAI 常用参数:

model_name:模型名称,默认为 ‘gpt-3.5-turbo’。

temperature:温度系数。 openai_api_key:OpenAI API key,

openai_proxy:设置代理。max_tokens:模型输出的最大 token 数。

streaming:是否使用流式传输,即逐字输出模型回答,默认为 False。

LangChain 提供了 Template 模块设置 Prompt。可以直接调用 Template 填充个性化任务。Template 是包括 Python 字符串范式的字符,可以使用 format 方法进行填充。

from langchain.prompts import ChatPromptTemplate

template_str = """Translate the text that is delimited 
by triple backticks into a Chinses. text: ```{text}```"""
chat_template = ChatPromptTemplate.from_template(template_str)

text = "Today is Saturday."
# 接着调用 format_messages 将 template 转化为 message 格式
message = chat_template.format_messages(text=text)
response = chat(message)

文心一言

        调用文心一言API同样需要key才可以使用。其有两层秘钥认证,第一层,拥有调用权限的账户可获取 API_Key 和 Secret_Key,每一个账户可以创建若干个应用,每个应用会对应一个 API_Key 和 Secret_Key,基于这两个 Key 可获取 access_token 值。使用 access_token 调用百度文心大模型。

        进入文心千帆服务平台,选择应用接入,创建文心大模型的应用,创建成功后就可以看到AppID、API Key、Secret Key,使用API Key、Secret Key获取access_token需要通过post请求。

import requests
import json


def get_access_token():
    """
    使用 API Key,Secret Key 获取access_token,替换下列示例中的应用API Key、应用Secret Key
    """
    # 指定网址
    url = "https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=" \
          "{api_key}&client_secret={secret_key}"
    # 设置 POST 访问
    payload = json.dumps("")
    headers = {
        'Content-Type': 'application/json',
        'Accept': 'application/json'
    }
    # 通过 POST 访问获取账户对应的 access_token
    response = requests.request("POST", url, headers=headers, data=payload)
    
    return response.json().get("access_token")

使用百度原生接口调用

def get_res(prompt):
    # 调用接口
    url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/" \
          "eb-instant?access_token={access_token}"
    # 配置 POST 参数
    payload = json.dumps({
        "messages": [
            {
                "role": "user",  # user prompt
                "content": "{}".format(prompt)  # 输入的 prompt
            }
        ]
    })
    headers = {'Content-Type': 'application/json'}
    # 发起请求
    response = requests.request("POST", url, headers=headers, data=payload)
    # 返回的是一个 Json 字符串
    js = json.loads(response.text)
    
    return js["result"]

常用参数:

messages:提示词,不支持 max_token 参数,由模型自行控制最大 token 数,content 总长度不能超过11200字符,超出时模型自动遗忘前文。 

temperature:温度系数,默认0.95,不能设置为0。stream:是否使用流式传输。

使用LangChain调用文心模型

        原生的 LangChain 不支持调用文心模型,需要自定义LLM后才可使用。

ChatGLM

       ChatGLM 包括 ChatGLM-130B 和 ChatGLM-6B 模型,支持复杂的自然语言指令,可解决推理类问题。初次使用的用户有18元token的免费使用额度。ChatGLM 有 SDK 和 HTTP 两种方式实现模型 API 的调用,建议使用 SDK 进行调用以获得更好的编程体验。注:需要安装zhupuai库。

import zhipuai

zhipuai.api_key = "api key"  # 填写控制台中获取的 APIKey 信息
model = "chatglm_std"  # 用于配置大模型版本

def get_prompt(role, content, ms=[]):
    # role 是指定角色,content 是 prompt 内容
    d = dict()
    d["role"] = role
    d["content"] = content
    ms.append(d)
    
    return ms

p = get_prompt("user", "Hello!")

# 请求模型, 调用glm的SDK
response = zhipuai.model_api.invoke(
    model=model,
    prompt=p
)
print(response)

常用参数:

prompt:列表, 按照 {"role": "user", "content": "Hello!"} 的键值对形式进行传参,超过模型输入长度限制会自动截断。

temperature控制输出的随机性,(0.0,1.0],不能等于 0,默认值 0.95 。

top_p核取样,(0.0, 1.0) ,默认值 0.7,0.7表示从前 70% 的结果中取 tokens。

request_id:字符串每次请求的唯一标识,用户端传参要保证唯一,为空则默认生成。

return_type:字符串返回内容的类型,默认返回json_string,text 表示返回文本内容。

:可根据需要调整top_p或temperature,但不要同时调整。

使用LangChain调用ChatGLM时同样需要先自定义LLM才可使用。

LLM开发流程

        调用 LLM 的 API 实现核心的理解与生成,使用 Prompt 控制大语言模型。LLM的两个核心功能:指令理解和文本生成。相比之前,使用小模型解决业务问题,需要将业务分解成子问题,对每个子问题划分训练集和验证集,训练模型,最后在将模型链接在一起。在 LLM 的帮助下,可使用通用模型 + 不同业务的提示词来解决业务问题。在这种情况下,对效果的评估也不同于之前,由于不需要构建训练集、验证集、测试集,而是直接使用业务数据作为验证集以调整提示词,并结果不好的数据作为测试集修改提高提示词。

开发过程分解

        应用目的:开发模型的核心目的。

        应用功能:应用需实现的功能及业务逻辑拆解。

        应用架构:业务数据 + 提示词 + 通用大模型

        数据处理:对业务数据预处理,做向量化并存在数据库中。

        提示工程:使用业务数据构建验证集并以此设计提示词。

        优化迭代:根据上一步构建的提示词效果,选出效果不佳的case优化提示词。

        

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值