引言
机器学习正在快速改变我们的世界,从自动驾驶汽车到个性化推荐系统,其应用无处不在。然而,一个成功的机器学习项目不仅依赖于强大的算法和丰富的数据,还需要精确的模型评估方法。模型评估是机器学习过程中不可或缺的环节,它通过衡量模型对新数据的预测能力,来指导模型的选择与优化。
目录
2.3.3 召回率 (Recall) 或 灵敏度 (Sensitivity)
模型评估的基本概念
在机器学习中,模型评估方法用于确定模型在未见数据上的表现。这些方法通过量化模型的错误率和预测能力,帮助我们理解模型的泛化能力。泛化能力是指模型对新、未见数据的预测准确性。出色的模型不仅要在训练数据上表现良好,还需在测试数据上保持良好的性能。模型评估方法主要有以下几个方面的考量:
误差分析:通过统计模型预测错误的数量和类型来评估模型。
泛化能力:评估模型在训练数据和测试数据上的表现差距。
鲁棒性